#include <iostream> #include <stdlib.h> #include <string.h> #include <math.h> int myatoi(char *s, int *i) { float wert; int rc=0; char *endp; wert=strtod(s, &endp); if (s==endp) { rc=0; } else { *i=(int)floor(wert); rc=1; } return(rc); } int myatof(char *s, float *f) { double wert; int rc=0; char *endp; wert=strtod(s, &endp); if (s==endp) { rc=0; } else { *f=(float)wert; rc=1; } return(rc); } char *getsig(char *s) { char *a, *b, *rc; /* allocates memory for a string in */ /* doublequotes and returns a pointer to it */ if (strchr(s, '"')) { a=strchr(s, '"'); b=strrchr(s, '"'); if (a<b) { rc=new char[b-a]; strncpy(rc, (a+1), b-a-1); rc[b-a-1]='\0'; } else { rc=new char[1]; strcpy(rc,"\0"); } } else { rc=new char[1]; strcpy(rc,"\0"); } return rc; } float prho(int n, float is, int *ifault) { /* Algorithm AS 89 Appl. Statist. (1975) Vol.24, No. 3, P377. To evaluate the probability of obtaining a value greater than or equal to is, where is=(n**3-n)*(1-r)/6, r=Spearman's rho and n must be greater than 1 n is the number of data pairs in the correlation The calculated probability is for one-sided tests. For two-sided tests multiply the probability value with 2. Auxiliary function required: ALNORM = algorithm AS66 */ float c1=0.2274, c2=0.2531, c3=0.1745, c4=0.0758, c5=0.1033, c6=0.3932; float c7=0.0879, c8=0.0151, c9=0.0072, c10=0.0831, c11=0.0131, c12=0.00046; float rc; double b, x, y, u; long i, js, ifr, nfac, m, n1, mt, nn, ise; long l[7]; extern float alnorm(float x, int upper); /* Test admissibility of arguments and initialize */ rc=1.0; *ifault=1; if (n<=1) return(rc); *ifault=0; if (is<=0) return(rc); rc=0.0; if (is > n*(n*n-1)/3) return(rc); js=(long)is; if (js!= 2*(js/2)) js=js+1; /* if (n>6) goto mark6; */ goto mark6; /* Exact evaluation of probability */ nfac=1; for (i=1; i<=n; i++) { nfac*=i; l[i]=i; } mark1: rc=1.0/(float)(nfac); if (js != n*(n*n-1)/3) return(rc); ifr=0; for (m=1; m<=nfac; m++) { ise=0; for (i=1; i<=n; i++) { ise+=(i-l[i])*(i-l[i]); } mark2: if (js <= ise) ifr++; n1=n; mark3: mt=l[1]; nn=n1-1; for (i=1; i<=nn; i++) { l[i]=l[i+1]; } mark4: l[n1]=mt; if ((l[n1]!=n1) || (n1==2)) goto mark5; n1--; if (m!=nfac) goto mark3; } mark5: rc=(float)(ifr)/(float)(nfac); return(rc); /* Evaluation by Edgeworth series expansion */ mark6: b=1.0/(double)(n); x=(6.0*((double)(js)-1.0)*b/(1.0/(b*b)-1.0)-1.0)*sqrt(1.0/b-1.0); y=x*x; u=x*b*(c1+b*(c2+c3*b)+y*(-c4+b*(c5+c6*b)-y*b*(c7+c8*b-y*(c9-c10*b+y*b*(c11-c12*y))))); /* Call to algorithm AS 66 */ rc=u/exp(y/2.0)+alnorm(x,1); if (rc < 0.0) rc=0.0; if (rc > 1.0) rc=1.0; return(rc); } /* Algorithm AS66 Applied Statistics (1973) vol22 no.3 Evaluates the tail area of the standardised normal curve from x to infinity if upper is .true. or from minus infinity to x if upper is .false. */ float stdnorm(float x) { return (1.0/sqrt(2*3.141592653))*exp(-0.5*x*x); } float alnorm(float x, int upper) { float q; float stdnorm(float x); extern float qtrap(float (*func)(float x), float a, float b); if (x==0.0) q=0; else q=qtrap(&stdnorm, 0, x); if (upper) q=1.0-q-0.5; else q+=0.5; return(q); } #define EPS 1.0e-5 #define JMAX 20 float qtrap(float (*func)(float), float a, float b) { float trapzd(float (*func)(float), float a, float b, int n); void nrerror(char error_text[]); int j; float s,olds; olds = -1.0e30; for (j=1;j<=JMAX;j++) { s=trapzd(func,a,b,j); if (fabs(s-olds) < EPS*fabs(olds)) return s; olds=s; } nrerror("Too many steps in routine qtrap"); return 0.0; } #undef EPS #undef JMAX #define FUNC(x) ((*func)(x)) float trapzd(float (*func)(float), float a, float b, int n) { float x,tnm,sum,del; static float s; int it,j; if (n == 1) { return (s=0.5*(b-a)*(FUNC(a)+FUNC(b))); } else { for (it=1,j=1;j<n-1;j++) it <<= 1; tnm=it; del=(b-a)/tnm; x=a+0.5*del; for (sum=0.0,j=1;j<=it;j++,x+=del) sum += FUNC(x); s=0.5*(s+(b-a)*sum/tnm); return s; } } #undef FUNC