
Using Imported Graphics in LATEX and pdfLATEX

Keith Reckdahl
epslatex at yahoo dot com

Version 3.0.1
January 12, 2006

This document describes first how to import graphics into LATEX documents and
then covers a wide variety issues about their use. Readers can locate specific infor-
mation by checking the Table of Contents starting on page 5 or the Index starting
on page 122.

Importing graphics begins with specifying the graphicx package

\usepackage{graphicx}

and then using the \includegraphics command to insert the file

\includegraphics{file}

The \includegraphics command is covered in more detail in Section 7 on Page 22.

This document is divided into the following five parts

Part I: Background Information

This part provides historical information and describes basic LATEX terminol-
ogy. It also

• The Encapsulated PostScript (eps) format, differences between eps and
ps files, and methods for converting non-eps graphics to eps.

• The graphic formats that can be directly imported with pdfTEX (jpeg,
png, pdf, MetaPost) are described.

• Freeware/Shareware graphics software is described.

Part II: The LATEX Graphics Bundle

This part describes the commands in the graphics bundle which import, scale,
and rotate graphics. This part covers much of the information in the graphics
bundle documentation [7].

Part III: Using Graphics Inclusion Commands

This part describes how the graphics bundle commands are used to import,
rotate, and scale graphics. Three situations where graphics inclusion is modified
are also covered:

© Copyright 1995-2006 by Keith Reckdahl. Reproduction and distribution is allowed under terms
of the LATEX Project Public License (LPPL). See http://www.latex-project.org/lppl/ for the
details of the LPPL license.

1

http://www.latex-project.org/lppl/

• Compressed eps files and non-eps graphic formats (tiff, gif, jpeg,
pict, etc.) can also be inserted on-the-fly when dvips is used with an
operating system which supports pipes (such as Unix). When using other
operating systems, the non-eps graphics must be converted to eps be-
forehand.
Since neither LATEX nor dvips has any built-in decompression or graphics-
conversion capabilities, that software must be provided by the user.

• Since many graphics applications support only ascii text, the psfrag
system allows text in eps files to be replaced with LATEX symbols or
mathematical expressions.

• When an eps graphic is inserted multiple times (such as a logo behind the
text or in the page header) the final PostScript includes multiple copies
of the graphics. When the graphics are not bitmapped, a smaller final
PostScript file can be obtained by defining a PostScript command for the
graphics.

Part IV: The figure Environment

There are several advantages to placing graphics in figure environments. Figure
environments automatically number graphics, allowing them to be referenced
or included in a table of contents. Since the figures can float to avoid poor
page breaks, it is much easier to produce a professional-looking document.

In addition to general information about the figure environment, this section
describes the following figure-related topics:

• How to customize the figure environment, such as adjusting figure place-
ment, figure spacing, caption spacing, and adding horizontal line between
the figure and the text. Caption formatting can also be customized, al-
lowing users to modify the style, width, and font of captions.

• How to create marginal figures and wide figures which extend into the
margins.

• How to produce figures with landscape orientation in a portrait document.
• How to place captions beside the figure instead of below or above the

figure.
• For two-sided documents, how to ensure that a figure appears on an odd

or even page. Also, how to ensure that two figures appear on facing pages.
• How to create boxed figures.

Part V: Complex Figures

This part describes how to construct complex figures that contain multiple
graphics.

• How to form side-by-side graphics, side-by-side figures, and side-by-side
subfigures.

• How to place a table next to a figure in the same float.
• How to stack multiple rows of figures.
• How to construct continued figures which can span multiple pages.

2

Where to Get this Document

This document is available in pdf and PostScript form as

CTAN/info/epslatex/english/epslatex.ps
CTAN/info/epslatex/english/epslatex.pdf

where CTAN can be replaced by any of the following ctan (Comprehensive TEX
Archive Network) sites and mirrors

England ftp://ftp.tex.ac.uk/tex-archive/
Germany ftp://ftp.dante.de/tex-archive/
Denmark ftp://tug.org/tex-archive
France ftp://ftp.loria.fr/pub/ctan
Russia ftp://ftp.chg.ru/pub/TeX/CTAN
Vermont, USA ftp://ctan.tug.org/tex-archive/
Florida, USA ftp://ftp.cise.ufl.edu/pub/mirrors/tex-archive/
Utah, USA ftp://ctan.math.utah.edu/tex-archive/
Korea ftp://ftp.ktug.or.kr/tex-archive/
Japan ftp://ftp.riken.go.jp/pub/tex-archive/
Hong Kong ftp://ftp.comp.hkbu.edu.hk/pub/TeX/CTAN/
Singapore ftp://ftp.nus.edu.sg/pub/docs/TeX/
New Zealand ftp://elena.aut.ac.nz/pub/CTAN
Australia ftp://ctan.unsw.edu.au/tex-archive/
India http://mirror.gnowledge.org/ctan/
South Africa ftp://ftp.sun.ac.za/CTAN/
Brazil ftp://ftp.das.ufsc.br/pub/ctan/

A complete list of ctan mirrors can be obtained from the CTAN.sites file at any
ctan site.

Jean-Pierre Drucbert’s French translation of Version 2.0 of this document is avail-
able in pdf and PostScript as

CTAN/info/epslatex/french/fepslatex.pdf
CTAN/info/epslatex/french/fepslatex.ps

Acknowledgments

I would like to thank David Carlisle for providing a great deal of assistance with
this document. Donald Arseneau, Robin Fairbairns, Jim Hafner, Piet van Oostrum,
Rolf Niepraschk, Axel Sommerfeldt, and other contributors to the comp.text.tex
newsgroup provided much of the information for this document. Thanks to Jean-
Pierre Drucbert for translating this document into French.

Thanks also goes to the many other people who provided me with valuable sug-
gestions and bug reports for this document.

3

ftp://ctan.tug.org/tex-archive/info/epslatex/english/epslatex.ps
ftp://ctan.tug.org/tex-archive/info/epslatex/english/epslatex.pdf
ftp://ftp.tex.ac.uk/tex-archive/
ftp://ftp.dante.de/tex-archive/
ftp://tug.org/tex-archive
ftp://ftp.loria.fr/pub/ctan
ftp://ftp.chg.ru/pub/TeX/CTAN
ftp://ctan.tug.org/tex-archive/
ftp://ftp.cise.ufl.edu/pub/mirrors/tex-archive/
ftp://ctan.math.utah.edu/tex-archive/
ftp://ftp.ktug.or.kr/tex-archive/
ftp://ftp.riken.go.jp/pub/tex-archive/
ftp://ftp.comp.hkbu.edu.hk/pub/TeX/CTAN/
ftp://ftp.nus.edu.sg/pub/docs/TeX/
ftp://elena.aut.ac.nz/pub/CTAN
ftp://ctan.unsw.edu.au/tex-archive/
http://mirror.gnowledge.org/ctan/
ftp://ftp.sun.ac.za/CTAN/
ftp://ftp.das.ufsc.br/pub/ctan/
ftp://ctan.tug.org/tex-archive/info/epslatex/french/fepslatex.pdf
ftp://ctan.tug.org/tex-archive/info/epslatex/french/fepslatex.ps

To my charming wife Becky,
and to Elise and Eric,

two wonderful kids who have disrupted and enriched my life
more than I ever could have imagined.

4

Contents

I Background Information 9

1 Introduction 9

2 LATEX Terminology 10

3 Encapsulated PostScript 11
3.1 Forbidden PostScript Operators . 12
3.2 The EPS BoundingBox . 12
3.3 Converting PS files to EPS . 13
3.4 Fixing Non-standard EPS files . 14

4 How EPS Files are Used by LATEX 14
4.1 Line Buffer Overflow . 14

5 PDF Graphics 15
5.1 JPEG . 15
5.2 PNG . 16
5.3 PDF . 16
5.4 MetaPost . 16
5.5 PurifyEPS . 17

6 Graphics Software 17
6.1 Ghostscript . 17
6.2 Graphics-Conversion Programs . 17
6.3 Level 2 EPS Wrappers . 20
6.4 Editing PostScript . 21

II The LATEX Graphics Bundle 22

7 Graphics Inclusion 22
7.1 Graphics Driver . 22
7.2 Graphics Inclusion for DVIPS-style Documents 22
7.3 Graphics Inclusion for pdfLATEX Documents 23
7.4 Documents to be Processed by both LATEX and pdfLATEX 23
7.5 Specifying Width, Height, or Angle . 24

8 Rotating and Scaling Objects 27
8.1 The scalebox Command . 27
8.2 The resizebox Commands . 27
8.3 The rotatebox Command . 28

9 Advanced Graphics-Inclusion Commands 29
9.1 The DeclareGraphicsExtensions Command 29
9.2 The DeclareGraphicsRule Command 30

5

III Using Graphics-Inclusion Commands 32

10 Horizontal Spacing and Centering 32
10.1 Horizontal Centering . 32
10.2 Horizontal Spacing . 32

11 Rotation, Scaling, and Alignment 33
11.1 Difference Between Height and Totalheight 33
11.2 Scaling of Rotated Graphics . 33
11.3 Alignment of Rotated Graphics . 34
11.4 Minipage Vertical Alignment . 36

12 Overlaying Two Imported Graphics 38
12.1 Overpic Package . 39

13 Using Subdirectories 39
13.1 TEX Search Path . 39
13.2 Temporarily Changing the TEX Search Path 40
13.3 Graphics Search Path . 40
13.4 Conserving Pool Space . 41

14 Compressed and Non-EPS Graphics Files in dvips 42
14.1 Compressed EPS Example . 43
14.2 Non-EPS Graphic Files . 43
14.3 GIF Example . 44
14.4 TEX Search Path and dvips . 44

15 The PSfrag Package 45
15.1 PSfrag Example #1 . 46
15.2 PSfrag Example #2 . 47
15.3 LATEX Text in EPS File . 48
15.4 Figure and Text Scaling with PSfrag 48
15.5 PSfrag and PDFTEX . 48

16 Including An EPS File Multiple Times 49
16.1 Defining a PostScript Command . 50
16.2 Graphics in Page Header or Footer . 52
16.3 Watermark Graphics in Background 53

IV The Figure Environment 55

17 The Figure Environment 55
17.1 Creating Floating Figures . 56
17.2 Figure Placement . 58
17.3 Clearing Unprocessed Floats . 59
17.4 Too Many Unprocessed Floats . 60

18 Customizing Float Placement 61
18.1 Float Placement Counters . 61
18.2 Figure Fractions . 61
18.3 Suppressing Floats . 63

6

19 Customizing the figure Environment 64
19.1 Figure Spacing . 64
19.2 Horizontal Lines Above/Below Figure 65
19.3 Caption Vertical Spacing . 66
19.4 Caption Label . 67
19.5 Caption Numbering . 67
19.6 Moving Figures to End of Document 68
19.7 Adjusting Caption Linespacing . 68

20 Customizing Captions with caption package 69
20.1 Caption Package Overview . 69
20.2 Caption Commands . 70
20.3 Customizing Captions with Caption Command 70
20.4 Caption Package Examples . 76
20.5 Further Customization . 84

21 Non-Floating Figures 87
21.1 Non-floating Figures without the caption package 88
21.2 The float Package’s [H] Placement Option 88

22 Marginal Figures 89

23 Wide Figures 90
23.1 Wide Figures in One-sided Documents 90
23.2 Wide Figures in Two-sided Documents 91

24 Landscape Figures 91
24.1 Landscape Environment . 92
24.2 Sidewaysfigure Environment . 92
24.3 Rotcaption Command . 94

25 Captions Beside Figures 94
25.1 The Sidecap Package . 95
25.2 Side Captions without Sidecap . 96

26 Figures on Even or Odd Pages 97
26.1 Figures on Facing Pages . 98

27 Boxed Figures 99
27.1 Box Around Graphic . 99
27.2 Box Around Figure and Caption . 99
27.3 Customizing fbox Parameters . 101
27.4 The Fancybox Package . 101

V Complex Figures 104

28 Side-by-Side Graphics 104
28.1 Side-by-Side Graphics in a Single Figure 104
28.2 Side-by-Side Figures . 105
28.3 Side-by-Side Subfigures . 106

7

29 Separate Minipages for Captions 108

30 Placing a Table Beside a Figure 109

31 Stacked Figures and Subfigures 110
31.1 Stacked Figures . 110
31.2 Stacked Subfigures . 111

32 The subfig package 113
32.1 The Subfloat Command . 113
32.2 Customizing subfig with captionsetup Command 113
32.3 The ContinuedFloat Command . 114

33 Continued Figures and Subfigures 116
33.1 Continued Figures . 116
33.2 Continued Subfigures . 116

References 120

Index 122

8

Part I

Background Information

1 Introduction

When TEX was written, PostScript/eps, jpeg, gif, and other graphic formats didHistory
not exist. As a result, Knuth’s dvi format does not have direct support for imported
graphics. However, TEX allows dvi files to contain \special commands which pass
commands to programs which use dvi files. This allowed TEX and LATEX to import
any graphic format which is supported by the dvi program being used.

For many years, dvi files were usually converted to PostScript and the standard
imported-graphic format was Encapsulated PostScript (eps), which is a subset of
the PostScript language. Inserting eps graphics in LATEX originally required the
low-level \special command. To make graphic-insertion easier and more portable,
two higher-level packages epsf and psfig were written for LATEX2.09. In epsf, the
graphics insertion was done by the \epsfbox command, while three other commands
controlled graphic scaling. In psfig, the \psfig command not only inserted graphics,
it also scaled and rotated them. While the psfig syntax was popular, its code was not
as robust as epsf. As a result, the epsfig package was created as a hybrid of the two
graphics packages, with its \epsfig command using the \psfig syntax and much
of the more-robust \epsfbox code. Unfortunately, \epsfig still used some of the
less-robust \psfig code.

With the release of LATEX2ε in 1994, the LATEX3 team addressed the generalLATEX
Graphics

Bundle
problem of inserting graphics in LATEX. Their efforts produced the “LATEX graphics
bundle1 which contains totally re-written commands that are more efficient, more
robust, and more portable than other graphics-insertion commands.

The graphics bundle contains the “standard” graphics package and the “extended”
graphicx package. While both packages contain an \includegraphics command,
the packages contain different versions of \includegraphics. The graphicx version
uses “named arguments” (similar to the \psfig syntax) which, although convenient,
violate the LATEX syntax guidelines which require that optional arguments be po-
sitional. As a compromise, two versions of \includegraphics were written, with
the graphics package following the LATEX syntax guidelines and the graphicx package
using the more-convenient named arguments. The graphicx \includegraphics sup-
ports scaling and rotating, but the graphics \includegraphics command must be
nested inside \rotatebox or \scalebox commands to produce rotating or scaling.

This document uses the graphicx package because its syntax is more convenient
than the graphics syntax. Since both packages have the same capabilities, the exam-
ples in this document can also be performed with the graphics package, although the
resulting syntax may be more cumbersome and slightly less efficient. For a more-
detailed description of the packages, see the graphics bundle documentation [7].

For backward-compatibility, the graphics bundle also includes the epsfig package
which replaces the original LATEX2ε epsfig package. The new epsfig package de-
fines the \epsfbox, \psfig, and \epsfig commands as wrappers which simply call
the \includegraphics command. Since these wrappers are less efficient than the
straight \includegraphics command, the wrapped packaged should be used only

1Note that there is a plain TEX version of the LATEX graphics bundle. See the files in the directory
CTAN/macros/plain/graphics/

9

ftp://ctan.tug.org/tex-archive/macros/plain/graphics/

for old documents, with \includegraphics used for all new documents.
In addition to improving eps graphics-inclusion, the LATEX graphics bundle alsoNon-EPS

Graphics addressed the problem of including non-eps graphic formats such as jpeg and gif.
Since dvi-to-ps converters generally did not support direct inclusion of most non-eps
formats, inserting these graphics into PostScript documents required the graphics to
be converted into eps ahead of time. While this ahead-of-time conversion is usually
still the best approach, the graphics bundle provided another option: on-the-fly
graphics conversion by the dvi-to-ps converter. Section 6.2 on Page 17 describes
graphics-conversion programs while Section 14 on Page 42 describes how to use non-
eps graphics with dvi-to-ps converters.

When PostScript was the conventional final format for LATEX documents, thepdfTEX
process was a two-step procedure: (1) LATEX was used to create a dvi file, and (2) a
dvi-to-ps processor (such as dvips) was used to create a PostScript file. The advent
and subsequent popularity of Adobe’s pdf format initially added a third step to the
conventional process: (3) a tool such as Ghostscript2, Adobe Acrobat3, or PStill4

was used to convert the PostScript file to pdf.
However, not only was this three-step LATEX-dvips-ghostscript process cumber-

some, it made certain pdf features such as hyperlinks difficult to implement. To
correct this, Hàn Thé̂ Thành wrote a tool called TEX2pdf which modified the TEX
engine to produce pdf files directly from TEX. TEX2pdf was eventually renamed
pdfTEX and, with the help of many volunteers (and the blessing of Donald Knuth),
was extended to implement the full typesetting capabilities of TEX. While pdfTEX
nominally outputs pdf, it also has the capability of outputting the same dvi that
would be produced by TEX.

Just as the latex command uses TEX to process LATEX documents into dvi files,
the command pdflatex uses pdfTEX to process LATEX documents directly into pdf
files.

An important aspect of pdfTEX is its native inclusion of a variety of graphicspdfTEX and
Graphics formats: jpeg, png, pdf, MetaPost. Although older versions of pdfTEX supported

native inclusion of tiff files, the current version of pdfTEX does not support tiff.
Also note that pdfTEX cannot not directly import eps files5, which requires users

with eps files to use a program like epstopdf which converts eps files to pdf format,
although this prevents the direct use of psfrag (see Section 15 on Page 45).

2 LATEX Terminology

A box is any LATEX object (characters, graphics, etc.) that is treated as a unit (see
[1, page 103]). Each box has a reference point on its left side. The box’s baseline
is a horizontal line which passes through the reference point (see Figure 1). When
LATEX forms lines of text, characters are placed left-to-right with their reference
points aligned on a horizontal line called the current baseline, aligning the characters’
baselines with the current baseline. LATEX follows the same process for typesetting
graphics or other objects; the reference point of each object is placed on the current
baseline.

2Free software, see Section 6.1 on Page 17.

3Commercial software, see www.adobe.com

4Shareware, see www.pstill.com

5pdfTEX can directly import eps files processed by PurifyEPS, see Section 5.5 on Page 17.

10

Reference
Point

Baseline

totalheight

height

depth

width

Figure 1: Sample LATEX Box

The size of each box is described by three lengths: height, depth, width. The
height is the distance from the reference point to the top of the box. The depth is
the distance from the reference point to the bottom of the box. The width is the
width of the box. The totalheight is defined as the distance from the bottom of the
box to the top of the box, or totalheight=height+depth.

The reference point of a non-rotated eps graphic is its lower-left corner (see left
box in Figure 2), giving it zero depth and making its totalheight equal its height.
The middle box in Figure 2 shows a rotated graphic where the height is not equal to
the totalheight. The right box in Figure 2 shows a rotated graphic where the height
is zero.

Reference
Point

width

height

width

depth

width

Graphics

Graphics

G
raphics

height

depth

Figure 2: Rotated LATEX Boxes

3 Encapsulated PostScript

The PostScript language describes both graphics and text. The PostScript language
is used in conventional PostScript (ps) files to describe multiple-page documents
and also in Encapsulated PostScript (eps) files to describe graphics for insertion
into documents. There are two main differences between ps and eps files

• eps files can contain only certain PostScript operators.

11

• eps files must contain a BoundingBox line which specifies the size of the eps
graphic.

3.1 Forbidden PostScript Operators

Since eps graphics must share the page with other objects, the commands in an eps
file cannot perform page operations such as selecting a page size (such as letter or
a4) or erasing the entire page with erasepage. The following PostScript operators
are not allowed in eps files:

a3 a4 a5 banddevice clear

cleardictstack copypage erasepage exitserver framedevice

grestoreall initclip initgraphics initmatrix letter

legal note prenderbands quit renderbands

setdevice setglobal setpagedevice setpageparams setsccbatch

setshared startjob stop

Although the following PostScript operators can be used in eps files, they may cause
problems if not used properly.

nulldevice setcolortransfer setgstate sethalftone

setmatrix setscreen settransfer undefinedfont

Some of the above operators may cause the dvi-to-ps process to fail, while others
may cause strange problems such as graphics which are misplaced, invisible, or flash
on the screen. Since many of these operators do not affect the PostScript stack,
such problems can often be eliminated by simply deleting the offending PostScript
operator. Other cases may require complicated hacking of the PostScript code.

3.2 The EPS BoundingBox

By convention, the first line of a PostScript file specifies the type of PostScript
and is then followed by a series of comments called the header or preamble. (Like
LATEX, PostScript’s comment character is %). One of these comments specifies the
BoundingBox. The BoundingBox line contains four integers

1. The x-coordinate of the lower-left corner of the BoundingBox.

2. The y-coordinate of the lower-left corner of the BoundingBox.

3. The x-coordinate of the upper-right corner of the BoundingBox.

4. The y-coordinate of the upper-right corner of the BoundingBox.
For example, the first 5 lines of an eps file created by gnuplot are

%!PS-Adobe-2.0 EPSF-2.0
%%Creator: gnuplot
%%DocumentFonts: Times-Roman
%%BoundingBox: 50 50 410 302
%%EndComments

Thus the gnuplot eps graphic has a lower-left corner with coordinates (50, 50) and
an upper-right corner with coordinates (410, 302). The BoundingBox parameters
have units of PostScript points which are 1/72 of an inch, making the above graphic’s
natural width 5 inches and its natural height 3.5 inches. Note that a PostScript point
is is slightly larger than a TEX point, which is 1/72.27 of an inch. In TEX and LATEX,
PostScript points are called “big points” and abbreviated bp while TEX points are
called “points” and abbreviated pt.

12

3.3 Converting PS files to EPS

Single-page PostScript files without any improper commands can be converted to
eps by using one of the following methods for adding a BoundingBox line. Since
these methods do not check for illegal PostScript operators, they do not
produce usable EPS files unless the PS files are free of forbidden operators.

1. The most convenient option is to use the ps2epsi utility distributed with
Ghostscript (see Section 6.1 on Page 17), which reads the PostScript file, cal-
culates the BoundingBox parameters, and creates an eps file (complete with
a BoundingBox) which contains the PostScript graphics.

The resulting file eps file is in epsi format, which means it contains an Inter-
change (low-resolution bitmapped) preview at the beginning of the file. Since
this preview is ascii-encoded, it does not cause the Section 4.1 bufsize errors.
However, this epsi preview increases the file size.

2. Another method of having ghostscript calculate the BoundingBox parameters
is to use the epstool utility, available for Unix, dos, Windows, and OS/2 from

http://www.cs.wisc.edu/~ghost/gsview/epstool.htm

For example, the command
epstool --copy --bbox file1.eps file2.eps

analyzes the contents of file1.eps to determine the correct BoundingBox and
then copies the contents of file1.eps with the calculated BoundingBox into
file2.eps.

The epstool utility can also be used to add tiff, wmf, epsi bitmap previews
to an eps file, or extract bitmap previews from an eps file.

3. Alternatively, the BoundingBox parameters can be calculated and manually
inserted in the PostScript file’s BoundingBox line or specified in the graphics-
insertion command (e.g., the \includegraphics command’s bb option). There
are several ways to calculate the BoundingBox parameters

(a) Use Ghostview/GSview to display the PostScript graphic. As the pointer
is moved around the graphic, the pointer’s coordinates (with respect to
the lower-left corner of the page) are displayed. To determine the Bound-
ingBox parameters, record the pointer coordinates at the lower-left corner
of the graphic and the upper-right corner of the graphic.

(b) Print out a copy of the PostScript graphics and measure the horizontal
and vertical distances (in inches) from the lower-left corner of the paper
to the lower-left corner of the graphics. Multiply these measurements by
72 to get the BoundingBox’s lower-left coordinates. Likewise, measure the
distances from the lower-left corner of the paper to the upper-right corner
of the graphics to get the BoundingBox’s upper-right coordinates.

(c) The bbfig script uses a PostScript printer to calculate the BoundingBox.
bbfig adds some PostScript commands to the beginning of the PostScript
file and sends it to the printer. At the printer, the added PostScript com-
mands calculate the BoundingBox of the original PostScript file, printing
the BoundingBox coordinates superimposed on the PostScript graphic.
The bbfig script is available from

CTAN/support/bbfig/

13

http://www.cs.wisc.edu/~ghost/gsview/epstool.htm
ftp://ctan.tug.org/tex-archive/support/bbfig/

3.4 Fixing Non-standard EPS files

Some applications (such as Mathematica and FrameMaker) produce non-standard
eps files which cannot be used in other programs such as LATEX. Some of these ap-
plications have developed their own “improved” flavor of PostScript with additional
features, while other applications use poor PostScript programming. Often these
non-standard eps can be easily fixed by scripts provided by either the software com-
panies themselves or by PostScript-savvy users. Check the software manufacturer’s
web page or search USENET groups associated with the software.

4 How EPS Files are Used by LATEX

When processing a dvips-style document, the eps files are used by both LATEX and
the dvi-to-ps converter.

1. LATEX scans the eps file for the BoundingBox line, which tells LATEX how much
space to reserve for the graphic.

2. The dvi-to-ps converter then reads the eps file and inserts the graphics in the
ps file.

This has the following ramifications

• If the BoundingBox parameters are specified in the graphics-insertion command
(e.g., the bb option of \includegraphics is used) then LATEX never even reads
the eps file. In fact, the eps file does not even need to exist when LATEX is
run.

• Since TEX cannot read non-ascii files and cannot spawn other programs, LATEX
cannot read the BoundingBox information from compressed or non-eps graph-
ics files. In these cases, the BoundingBox parameters must be specified in the
graphics-insertion command (e.g., in the bb option of the \includegraphics
command) or stored in a non-compressed text file (see Section 14 on Page 42).

• The eps graphics are not included in the dvi file. Since the eps files must
be present when the dvi file is converted to ps, the eps files must accompany
dvi files whenever they are moved.

• The eps graphics may not appear in some dvi viewers. To help the user with
placement of the graphics, these dvi viewers generally display the BoundingBox
in which the graphics will be inserted.

4.1 Line Buffer Overflow

TEX reads ascii files one line at a time, putting each line in its line buffer, which
is often about 3000 characters long. If any of the lines of the eps file is longer than
the line buffer, the following error is displayed

Unable to read an entire line--bufsize=3000.
Please ask a wizard to enlarge me.

Since eps rarely have lines longer than 3000 characters, there are two possible causes
of such an error

1. The EPS file contains a long binary preview.

Some applications place a binary preview of the graphics at the beginning of
the eps file. This allows applications (such as dvi viewers) to display the

14

graphics even though the application cannot interpret PostScript. Currently,
relatively few TEX-related applications use such previews.

If the binary preview is smaller than the line buffer, the \includegraphics
command skips over the preview6. However, the overfull bufsize error occurs
if the binary preview is larger than the line buffer. There are a couple work-
arounds for this problem

(a) If the preview won’t be used, the problem can be avoided by either deleting
it with a text editor or by preventing the original graphics application from
creating the preview.

(b) Since LATEX reads the eps file to only obtain the BoundingBox parame-
ters, LATEX does not read the eps file if the BoundingBox parameters
are provided by the graphics-insertion command (e.g., the bb option to
\includegraphics)

2. The file’s end-of-line characters are corrupted by an improper trans-
fer.

The following problem does not occur with most recent TEX distributions whose
versions of TEX are smart enough to identify all end-of-line characters.

Different platforms use different end-of-line characters: Unix uses a line feed
character (^J), Macintosh uses a carriage return (^M), while dos/Windows
uses a carriage return and line feed pair (^M^J). For example, if an eps file is
transferred in binary mode from a Macintosh to a Unix machine, the Unix TEX
doesn’t see any ^J end-of-line characters and thus thinks the entire file is one
big line, overfilling the line buffer.

If the eps file has no binary sections (e.g., no binary preview and no embedded
graphics) this problem can be avoided by transferring the eps file in text
mode. However, eps files with binary sections must be transferred with binary
mode, since the text mode transfer may corrupt the binary section. Since this
binary transfer does not translate the end-of-line characters, the BoundingBox
information must be provided by the graphics-insertion command (e.g., the bb
option to \includegraphics).

5 PDF Graphics

As mentioned earlier, pdfTEX can directly import the pdf, png, jpeg, and Meta-
Post graphic formats. This section provides a short description of these formats.
The commands for inserting these graphics into pdfLATEX are described in Section 7
on Page 22.

5.1 JPEG

jpeg is a compression standard authored by Joint Photographic Experts Group
(jpeg) Committee

http://www.jpeg.org/

6Note that \psfig and other obsolete graphics commands did not have the ability to skip over
binary previews

15

http://www.jpeg.org/

The jpeg format is a compression standard for bitmap graphics which uses a lossy7

compression scheme. In particular, its compression does not preserve lines and sharp
edges, making it poorly suited for line drawings and or graphics with sharp features.

5.2 PNG

For many years the gif format was the standard for compressed bitmaps for icons
and other line drawings, since its lossless lzw compression does not distort sharp
edges. Unisys’s enforcement of its lzw patent coupled with some gif technical
limitations (such a limit of 256 colors) spurred the development of the Portable
Network Graphics (PNG) format by a group eventually called the png Development
Group

http://www.libpng.org/pub/png/

Like GIF, PNG uses lossless compression which is suitable for line drawings. While
png can be used on any bitmap, jpeg’s lossy compression is often better than
png for photographs and other bitmaps without sharp edges (where “better” means
producing smaller files without distortion noticeable by the naked eye).

5.3 PDF

Adobe’s Portable Document Format (pdf) shares many similarities to its Adobe
sibling PostScript. Like PostScript, pdf can contain text, vector drawings, and
bitmap drawings. A pdf file can contain an entire document or just a single drawing
(similar to eps).

pdf is not only the primary output format of pdfTEX, but pdf also is the most
common method for importing vector graphics into pdfTEX. Many graphics pro-
grams allow their graphics output to be directly saved in pdf format. Programs
without direct pdf output can instead output eps vector graphics which can be eas-
ily converted to pdf vector graphics by the epstopdf conversion program available
from ctan as a Windows executable or as a perl script for use on other platforms
such as Unix/Linux or MacOSX

CTAN/support/epstopdf/

5.4 MetaPost

MetaPost is a graphics language written by John Hobby that is based on Donald
Knuth’s metafont, but with the added capability of outputting PostScript. Infor-
mation about MetaPost is available from

http://www.tug.org/metapost.html
http://cm.bell-labs.com/who/hobby/MetaPost.html

and is documented in [25].
MetaPost can be used inn dvips-style LATEX documents and also can be used

directly8 by pdfLATEX documents.

7Lossy compression means that the compression process loses data. That is, decompresssing a
lossy-compressed bitmap does not produce the original bitmap. Conversely, no data is lost during a
lossless compression, so decompressing a lossless-compressed bitmap produces the original bitmap.

8pdfLATEX actually uses ConTeXt code by Hans Hagen to convert MetaPost graphics into pdf
on-the-fly, however this is transparent to users.

16

http://www.libpng.org/pub/png/
http://www.adobe.com
ftp://ctan.tug.org/tex-archive/support/epstopdf/
http://www.tug.org/metapost.html
http://cm.bell-labs.com/who/hobby/MetaPost.html

The following procedure uses the pstoedit utility along with MetaPost (mpost)
to convert an eps file named graphic.eps into a MetaPost file name graphic.mps

pstoedit -f mpost graphic.eps graphic.mp
mpost graphic.mp
rename graphic.1 graphic.mps

5.5 PurifyEPS

Scott Pakin’s purifyeps utility is able to convert many (but not all) eps to a
“purified” version that can be read by both LATEX and pdfLATEX.

You need all of the following in order to run purifyeps:

PurifyEPS Available from CTAN/support/purifyeps/ where CTAN/ should be re-
placed by any of the ctan sites listed on page 3.

Perl Available from http://www.cpan.org

pstoedit Available from http://www.pstoedit.net/pstoedit

mpost from a LATEX distribution that includes MetaPost.

6 Graphics Software

6.1 Ghostscript

Ghostscript is a PostScript/pdf interpreter which runs on most platforms and is
distributed for free9. This allows PostScript, eps, and pdf files to be displayed
on the screen and printed to both Postscript and non-PostScript printers. AFPL
Ghostscript is available from the Ghostscript home page

http://www.cs.wisc.edu/~ghost/

These sites contains pre-compiled Windows/dos/OS/2 and Macintosh executables,
along with ready-to-compile source code for Unix/vms. Also available are graphical
interfaces (such as GSview, Ghostview, GV, etc) for Ghostscript which makes the
viewing of PostScript much easier.

6.2 Graphics-Conversion Programs

The following freeware and shareware programs convert between graphics format.
In dvips-style documents, these programs can convert non-eps graphics to eps. In
pdfLATEX documents, these program can convert graphics to one of the supported
formats (pdf, png, jpeg). Some of the programs allow command-line conver-
sion which makes it possible to convert the graphics on-the-fly (see Section 14.2 on
Page 43).

9Although AFPL Ghostscript (formerly known as Aladdin Ghostscript) is distributed for free,
it is not in the public domain. It is copyrighted and comes with certain limitations such as no
commercial distribution. When versions of Aladdin Ghostscript become approximately one year
old, Aladdin releases them as “GNU Ghostscript” whose use is governed by the less-restrictive GNU
Public License.

17

ftp://ctan.tug.org/tex-archive/support/purifyeps/
http://www.cpan.org
http://www.pstoedit.net/pstoedit
http://www.cs.wisc.edu/~ghost/

ImageMagick

ImageMagick is a free open-source software suite to create, edit, and compose
bitmap images. It can read, convert and write images in a large variety of
formats. Images can be cropped, colors can be changed, various effects can be
applied, images can be rotated and combined, and text, lines, polygons, ellipses
and Bezier curves can be added to images and stretched and rotated.
For example, when ImageMagick’s convert is on the operating system path,
the following command

convert file.jpg file.eps

stores an eps version of file.jpg in file.eps.
Multiple files can be converted with the wildcard

convert *.gif images.png

creates png versions of all the gif files in the current directory and stores
them as

images-0.png

images-1.png

...

Saving the resulting png files with the same base filename as the original gif
files is more involved since it requires writing a shell script or Windows batch
file.

ImageMagick runs on all major operating systems and Binaries and information
can be downloaded from

http://www.imagemagick.org/

GraphicsMagick

The ImageMagick interface periodically changes, causing incompatibility with
code that uses ImageMagick. As a result, the GraphicsMagick project was
started in November 2002 as a fork from ImageMagick 5.5.2, with the goal of
providing a set of graphics-conversion utilities with a stable interface and an
emphasis on fixing bugs over adding new features.

GraphicsMagick runs on Unix/Linux, Cygwin, MacOSX, and Windows. Bina-
ries and source code can be downloaded from

http://www.graphicsmagick.org/

NetPBM

NetPBM is a free open-source version of the now-unsupported PBMPLUS package.

NetPBM is a toolkit for manipulation of graphic images, including conversion of
images between a variety of different formats. There are over 220 separate tools
in the package including converters for about 100 graphics formats. NetPBM uses
the commandline and doesn’t have a graphical interface.

Most Linux distributions and the Cygwin Project include NetPBM packages.
Binary distributions of NetPBM for Windows, MacOSX, and other operating
systems can be downloaded from

18

http://www.imagemagick.org/
http://www.graphicsmagick.org/

http://netpbm.sourceforge.net/

Irfanview

Irfanview is an excellent, easy-to-install graphic viewer for Windows that is
compact and fast. Irfanview supports viewing and converting between a wide
variety of file formats, and provides basic image editing (such as cropping,
resampling, color/brightness adjustments, etc). Irfanview supports both GUI
and commandline operation, including batch mode.
For example, when Irfanview’s executable i view32.exe is on the Windows
path, the following command

i_view32 *.gif /convert=*.png

creates png versions of all the gif files in the current directory, storing them
in files with .png extensions and the same base name as the original gif files.

Irfanview can be downloaded from

http://www.irfanview.com/

Irfanview is freeware for personal, academic, and non-profit users. Commercial
users are asked to donate a $12 registration fee.

Graphic Converter

Graphic Converter is $30 shareware for Macintosh which reads about 190
graphic formats and exports about 75 formats. For information, see

http://www.lemkesoft.de/

WMF2EPS

WMF2EPS is a $20 shareware wmf-to-eps conversion program which runs on
Windows. It is available from

CTAN/nonfree/support/wmf2eps/

where CTAN/ should be replaced by any of the ctan sites listed on page 3.

The software can also be downloaded from the WMF2EPS homepage

http://www.wmf2eps.de.vu/

The homepage also includes other information, including links to Adobe-compatible
printer drivers (which is required for WMF2EPS).

KVEC

kvec is shareware ($25 for non-commercial use, $50 for commercial use) which
converts bitmap graphics (bmp, gif, tiff, etc) into PostScript and other
vector formats. kvec is available for Windows, OS/2, Linux, Unix, Macintosh,
and BeOS. More information is available at

http://www.kvec.de

19

http://netpbm.sourceforge.net/
http://www.irfanview.com/
http://www.lemkesoft.de/
ftp://ctan.tug.org/tex-archive/nonfree/support/wmf2eps/
http://www.wmf2eps.de.vu/
http://www.kvec.de

xv

xv is an interactive image manipulation program for the X Window System.
While it has graphics-conversion capability, xv was designed for image manip-
ulation program and thus is not tailored for graphics conversion (for example,
it does not provide command-line capabilities so graphics must be one-by-one.

xv is $25 shareware for non-commercial use, with the $25 registration manda-
tory for commercial use. More information is available from

http://www.trilon.com/xv/xv.html

GIMP

gimp (gnu Image Manipulation Program) is a freely available image ma-
nipulation program which duplicates much of the functionality of PhotoShop.
gimp is available for Unix/Linux, Windows, and MacOSX. More information
is available at

http://www.gimp.org/

6.3 Level 2 EPS Wrappers

Level 2 PostScript supports several compression schemes, including DCT (used in
jpeg files) and lzw (used in many tiff files). Additionally, this binary data can
be ascii-encoded as ascii85 or asciiHex (which produces ascii files which are
125% and 200%, respectively, of the original binary size). The fact that Level-2 eps
supports these compression schemes allows a Level-2 eps file to be constructed as a
wrapper around a jpeg file or tiff file. This produces better quality and smaller
files than converting the graphics to conventional eps. If one has a Level 2 PostScript
printer, it is better to use the following wrapper programs instead of the conversion
programs listed above. Since the resulting PostScript files can only be printed on
Level 2 printers, the documents are less portable.

Note that, by default, dvips strips the comment lines (those lines which begin
with %%) from any included eps graphics. Since ascii85-encoded level-2 graphics can
have lines beginning with %%, users including ascii85-encoded level-2 eps files must
use the dvips -K0 (K followed by a zero) option to prevent dvips from stripping
comment lines. Note asciiHex level-2 encoding does not have this problem.

jpeg2ps

A jpeg graphic can be converted to level 2 PostScript by the C program
jpeg2ps, which can be compiled Unix, dos, and other systems. jpeg2ps is
available from

CTAN/nonfree/support/jpeg2ps/
http://www.pdflib.com/products/more/jpeg2ps.html

http://gnuwin32.sourceforge.net/packages/jpeg2ps.htm

where CTAN/ should be replaced by any of the ctan sites listed on page 3.

jpeg2ps supports three types of level-2 encoding: ascii85 (default), 8-bit
binary (using jpeg2ps -b), or 7-bit asciiHex (using jpeg2ps -h).

20

http://www.trilon.com/xv/xv.html
http://www.gimp.org/
ftp://ctan.tug.org/tex-archive/nonfree/support/jpeg2ps/
http://www.pdflib.com/products/more/jpeg2ps.html
http://gnuwin32.sourceforge.net/packages/jpeg2ps.htm

tiff2ps

A tiff graphic can be converted to lzw-encoded Level-2 PostScript by using
tiff2ps, which can be compiled on Unix, dos, Mac, and vms platforms. The
source code for tiff2ps is available from the following three sites

http://www-mipl.jpl.nasa.gov/~ndr/tiff/html/tools.html
ftp://ftp.sgi.com/graphics/tiff/

ImageMagick’s level-2 EPS Capability

As described in Section 6.2 on Page 17, ImageMagick can convert between a
large number of graphics formats. Since one of these formats is level-2 eps,
ImageMagick has the same functionality as the level-2 wrappers listed above.
For example,

convert file.jpeg file.eps2

creates a level-2 eps version of file.jpeg and stores it in file.eps2.

6.4 Editing PostScript

While the graphics in an eps file can be modified by editing the file’s PostScript
commands, this is difficult for most people. Instead, it is easier to use the following
programs to edit eps graphics

pstoedit

pstoedit is a free program for Unix/Linux and Windows which converts Post-
Script and PDF graphics into vector formats (such as Xfig’s .fig format).
More information is available at

http://www.pstoedit.com/

Mayura Draw

Mayura Draw (formerly known as PageDraw) is $39 shareware for Windows
3.1/95/NT which is available from

http://www.mayura.com/

When used with ghostscript, Mayura Draw can edit PostScript files.

xfig

Xfig is a free drawing program for Unix/Xwindow available from

http://www.xfig.org/

Xfig can import eps drawings and add annotations, but currently cannot
modify the original eps graphics.

21

http://www-mipl.jpl.nasa.gov/~ndr/tiff/html/tools.html
ftp://ftp.sgi.com/graphics/tiff/
http://www.pstoedit.com/
http://www.mayura.com/
http://www.xfig.org/

Part II

The LATEX Graphics Bundle

This part provides an overview of The LATEX Graphics Bundle. More detail can be
found in the graphics bundle documentation [7] or the LATEX Graphics Companion
[4].

7 Graphics Inclusion

Graphics are imported using the graphicx package’s \includegraphics command
Syntax: \includegraphics[options]{filename}

where the options are listed in Tables 1, 2, and 3. Since \includegraphics does not
end the current paragraph, it can place graphics within text such as or .

7.1 Graphics Driver

The user must specify a graphics driver which tells the graphics package how to
process the imported graphic. The graphics bundle currently supports 18 different
drivers, but this document only covers the two most common drivers: the dvips
driver for dvips-style documents10 and the pdftex driver for for pdfLATEX docu-
ments. If the user wants to use either of these drivers, the driver usually does not
need to be explicitly specified, as the graphics.cfg in most LATEX distributions is
smart enough to specify the correct driver11.

If the user needs to specify a driver, it can be specified in one of three waysSpecifying
A Driver 1. The default can be specified in the graphics.cfg file.

2. Any driver specified as a \documentclass option overrides the driver specified
in graphics.cfg.

3. Any driver specified as an option in \usepackage{graphics} overrides the
drivers specified in the previous two manners.

7.2 Graphics Inclusion for DVIPS-style Documents

The best-supported graphics format for dvips-style documents is eps. When the
document is processed with latex, the following command

\includegraphics{file.eps}

includes the graphics from the eps file file.eps at its natural size. When the
specified filename has no extension

\includegraphics{file}

then \includegraphics appends the extensions in the \DeclareGraphicsExtensions
extension list (See Section 9.1 on Page 29).

10Where latex processes the LATEX file into a dvi file, which then is subsequently processed into
PostScript form by dvips.

11The graphics.cfg file detects whether the document is being processed by latex or pdflatex

and specifies a dvips option when for latex and a pdftex option for pdflatex.

22

7.3 Graphics Inclusion for pdfLATEX Documents

pdfTEX supports the direct importing of pdf, png, jpeg, and MetaPost graphics.
When the document is processed with pdflatex, the following commands

\includegraphics{file.pdf}

\includegraphics{file.png}

\includegraphics{file.jpg}

\includegraphics{file.mps}

include the graphics from the pdf file file.pdf, the png file file.png, and the
jpeg file file.jpg, and the MetaPost file file.mps at their natural size. When the
specified filename has no extension

\includegraphics{file}

then \includegraphics appends the extensions in the \DeclareGraphicsExtensions
extension list (See Section 9.1 on Page 29).

7.4 Documents to be Processed by both LATEX and pdfLATEX

It is often desired to allow a document to be processed by either LATEX or pdfLATEX,
with LATEX and dvips used when PostScript output is needed and pdfLATEX to be
used when pdf output is needed. Two things change when switching between LATEX
and pdfLATEX:

• The appropriate graphicx driver changes.

• The graphic types that can be directly imported change.

The following steps adjust these things, allowing a document to be processed by
either LATEX or pdfLATEX:

1. Create two copies12 of each graphic to be imported:

(a) An eps version which is imported when latex processes the document.
(b) A png, pdf, jpeg, or MetaPost version which is imported when pdflatex

processes the document.

2. Do not specify dvips or pdftex as an option in the \documentclass or the
\usepackage{graphicx} commands. Instead, the graphic.cfg command should
automatically pass the appropriate option to the graphicx package.

3. When using the \includegraphics command to insert the graphics, do not
specify any extension. For example:

\includegraphics{graphic}

The default extension list defined in dvips.def causes LATEX to import the eps
version of the graphics while the default extension list defined in pdftex.def
causes pdfLATEX to import the png, pdf, jpeg, or MetaPost version of the
graphics (see Section 9.1 on Page 29).

4. Do not directly use psfrag. If psfrag substitution is needed, use the method
described in Section 15.5 on Page 48.

12Sometimes PurifyEPS (see Section 5.5 on Page 17) can be used to create a single file that can
be used by both LATEX and pdfLATEX.

23

7.4.1 Conditional Code with the ifpdf Package

The ifpdf package’s \ifpdf command detects13 whether the document is being
processed by latex or pdflatex, allowing the document to have conditional code.
For example, since it may be advisable to minimize the length of the extension list
(as described in Section 9.1) the \ifpdf command can be used to customize the
extension list

\usepackage{ifpdf}

...

\ifpdf

\DeclareGraphicsExtensions{.pdf,.png,.jpg,.mps}

\else

\DeclareGraphicsExtensions{.eps}

\fi

If the user wants the conditional code to use different \documentclass options, the
follow code allows the \ifpdf command to be defined before the \documentclass
command

\RequirePackage{ifpdf}

\ifpdf

\documentclass[pdftex]{article}

\else

\documentclass[dvips]{article}

\fi

This code passes the [pdftex] option if the document is being processed by pdflatex
and passes the [dvips] option if the document is being processed by latex. As
described in Section 7.1 on Page 22, this code is generally not needed since most
distributions automatically do this in their graphics.cfg file.

7.5 Specifying Width, Height, or Angle

The commandSpecifying
Width \includegraphics[width=3in]{file}

includes the graphics from the specified file such that its width is 3 inches. Instead of
specifying a fixed width (such as 3 inches) specifying the width in terms of scalable
lengths14 makes the graphic layout more robust. For example, the command

\includegraphics[width=\linewidth]{graphic}

scales the included graphic to be as wide as the current text. The command
\includegraphics[width=0.80\linewidth]{graphic}

makes the included graphic 80% as wide as the current text. When the calc package
is used, the following command causes the graphics to be 2 inches more narrow than
the current text

\includegraphics[width=\linewidth-2.0in]{graphic}

Similarly, the commandSpecifying
Height

13Historically, one method for doing this detection was to use the fact that \pdfoutput was
defined only if pdfLATEX was processing the document. However, many TEX distributions now have
their latex command actually execute pdfLATEX in dvi mode, causing \pdfoutput to be defined
when both latex and pdflatex are executed. The ifpdf package solves this problem by providing
a conditional command that robustly determines whether the document is being processed directly
into a pdf file.

14The predefined scalable lengths are:

\textwidth is the width of the document’s normal text.

\linewidth is the width of lines for the current environment.

em is the width of a capital M for the current font.

ex is the height of a lowercase x for the current font.

24

Table 1: includegraphics Options

height The height of the graphics (in any of the accepted TEX units).
totalheight The totalheight of the graphics (in any of the accepted TEX units).
width The width of the graphics (in any of the accepted TEX units).
scale Scale factor for the graphic. Specifying scale=2 makes the graphic twice as large

as its natural size.
angle Specifies the angle of rotation, in degrees, with a counter-clockwise (anti-clockwise)

rotation being positive.
origin The origin command specifies what point to use for the rotation origin. By default,

the object is rotated about its reference point.
The possible origin points are the same as those for the \rotatebox command in
Section 8.3 on Page 28. For example, origin=c rotates the graphic about its center.

bb Specifies BoundingBox parameters. For example bb=10 20 100 200 specifies that
the BoundingBox has its lower-left corner at (10,20) and its upper-right corner at
(100,200).
Since \includegraphics automatically reads the BoundingBox parameters from
the eps file, the bb option is usually not specified. It is useful if the BoundingBox
parameters in the eps file are missing or incorrect.

Table 2: includegraphics Cropping Options

viewport Specifies what portion of the graphic to view. Like a BoundingBox, the area is
specified by four numbers which are the coordinates of the lower-left corner and
upper-right corner. The coordinates are relative to lower-left corner of the Bound-
ingBox.
For example, if the graphic’s BoundingBox parameters are 50 50 410 302,
viewport=50 50 122 122 displays the 1-inch square from the lower left of the
graphic, and viewport=338 230 410 302 displays the 1-inch square from the up-
per right of the graphic.
The clip option (see Table 3) must be used to prevent the portion of the graphic
outside the viewport from being displayed.

trim An alternate method for specifying what portion of the graphic to view. The four
numbers specify the amount to remove from the left, bottom, right, and top side,
respectively. Positive numbers trim from a side, negative numbers add to a side.
For example, trim=1 2 3 4 trims the graphic by 1 bp on the left, 2 bp on the
bottom, 3 bp on the right, 4 bp on the top.
The clip option (see Table 3) must be used to prevent the trimmed portion from
being displayed.

25

Table 3: includegraphics Boolean Options

clip Specifying clip=false the entire graphic appears, even if portions appear
outside the viewing area. (default)
When clip or clip=true is specified, any graphics outside of the viewing area
are clipped and do not appear.

draft Specifying draft or draft=true prevents the graphic from being included in
the document. The graphic’s BoundingBox and filename are displayed in place
of the graphic, making it faster to display and print the document.
Specifying draft=false causes the EPS graphic to be inserted.

keepaspectratio When keepaspectratio is not specified, specifying both the width and either
height or totalheight causes the graphic to be scaled anamorphically to fit
both the specified height and width.
When keepaspectratio is specified, specifying both the width and either
height or totalheight makes the graphic as large as possible such that its
aspect ratio remains the same and the graphic exceeds neither the specified
height nor width.

\includegraphics[height=2cm]{file}

includes the graphics from the specified file scaled such that its height is 2 cm. The
\includegraphics command also includes a totalheight option for specifying a
graphic’s totalheight. (See Section 2 on Page 10 for the definition of height and
totalheight).

The \includegraphics command’s angle option specifies the angle of the includedSpecifying
Angle graphic

\begin{center}
\includegraphics[angle=45]{graphic}

\end{center}

includes the graphic at its natural size and then rotates it by 45 degrees counter-
clockwise (anti-clockwise).

7.5.1 Specifying Angle and Height or Width

Since the \includegraphics options are interpreted from left to right, the order in
which the angle and size are specified makes a difference. For example

\begin{center}
\includegraphics[angle=90,totalheight=1cm]{graphic}
\includegraphics[totalheight=1cm,angle=90]{graphic}

\end{center}

produces

G
ra

ph
ic G

ra
ph

ic

26

The first box is rotated 90 degrees and then scaled such that its height is one cen-
timeter. The second box is scaled such that its height is one centimeter and then it
is rotated 90 degrees.

Note that the two graphics in the above figure are separated by an interword
space because the first \includegraphics line did not end with a %.

8 Rotating and Scaling Objects

In addition to the \includegraphics command, the graphicx package includes 4
other commands which rotate and scale any LATEX object: text, eps graphic, etc.

\scalebox{h-scale}[v-scale]{argument}
\resizebox{width}{height}{argument}
\resizebox*{width}{totalheight}{argument}
\rotatebox[options]{angle}{argument}

Since the graphicx \includegraphics command supports rotating and scaling op-
tions such as angle and width, the commands in this section rarely need to be used
with eps graphics. For example,

\includegraphics[scale=2]{file}
\includegraphics[width=4in]{file}
\includegraphics[angle=45]{file}

produce the same three graphics as

\scalebox{2}{\includegraphics{file}}
\resizebox{4in}{!}{\includegraphics{file}}
\rotatebox{45}{\includegraphics{file}}

However, the first syntax is preferred because it is faster and produces more efficient
PostScript/pdf.

8.1 The scalebox Command

Syntax: \scalebox{h-scale}[v-scale]{argument}

The \scalebox command scales an object, making its width be h-scale times its
original width and making the object’s height be v-scale times its original height.
If v-scale is omitted, it defaults to h-scale, keeping the aspect ratio constant.
Negative values reflect the object.

8.2 The resizebox Commands

Syntax: \resizebox{width}{height}{argument}
\resizebox*{width}{totalheight}{argument}

The \resizebox command resizes an object to a specified size. Specifying ! as either
height or width makes that length be such that the aspect ratio remains constant.
For example,

\resizebox{2in}{!}{argument}

scales the argument to be 2 inches wide while keeping its aspect ratio constant.
The standard LATEX arguments \height, \width, \totalheight, \depth can be

used to refer to the original size of argument. For example,

\resizebox{2in}{\height}{argument}

27

sizes argument to a width of 2 inches while keeping its same height.
The \resizebox* command is identical to \resizebox, except the second ar-

gument specifies the totalheight of the object. (See Section 2 on Page 10 for the
definition of height and totalheight, and see Section 11.1 on Page 33 for a comparison
of height and totalheight options.)

8.3 The rotatebox Command

Syntax: \rotatebox[options]{angle}{argument}

The \rotatebox command rotates an object by an angle given in degrees, with a
counter-clockwise rotation being positive. By default, the object is rotated about its
reference point. The \rotatebox options allow the point of rotation to be specified.

1. Specifying the [x=xdim,y=ydim], the object is rotated about the point whose
coordinates relative to the reference point are (xdim,ydim).

2. The origin option specifies one of 12 special points shown in in Figure 3.

Reference
Point

Baseline

Centerlines

[lt]

[lc]

[lB]

[lb]

[ct]

[c]

[cB]

[cb]

[rt]

[rc]

[rB]

[rb]

Figure 3: Available Origin Points

The horizontal position of the origin points is specified by one of three letters:
l,c,r (which stand for left, center, right, respectively), while the vertical po-
sition is specified by one of four letters: t,c,B,b (which stand for top, center,
Baseline, bottom, respectively). For example

[rb] specifies the bottom-right corner
[lt] specifies the top-left corner
[cB] specifies the center of the graphic’s Baseline

Note that

• The order of the letters is not important, making [br] equivalent to [rb].
• c represents either the horizontal center or vertical center depending what

letter is used with it.
• If only one letter is specified, the other is assumed to be c, making [c]

equivalent to [cc], [l] equivalent to [lc], [t] equivalent to [tc], etc.

28

9 Advanced Graphics-Inclusion Commands

This section describes advanced graphics-inclusion commands which are needed in
the following situations

1. When the specified filename has no extension. For example
\includegraphics{file}

2. When compressed eps graphics are used (also see Section 14.1 on Page 43).

3. When non-EPS graphics are used (also see Section 14.2 on Page 43).

In these situations, the \DeclareGraphicsRule and \DeclareGraphicsExtensions
commands are needed to control how LATEX handles files specified in \includegraphics.

• The \DeclareGraphicsExtensions command specifies the extensions to at-
tempt (e.g., .eps, .ps, .eps.gz, etc.) when the specified filename does not
have an extension.

• The \DeclareGraphicsRule specifies a command which operates on the file.
The execution of this command requires an operating system which support
pipes. For example, Unix supports pipes while dos does not.

Making this command a decompression command allows compressed eps graph-
ics to be used. Making this command a graphics-conversion command allows
non-eps graphics to be used.

9.1 The DeclareGraphicsExtensions Command

The \DeclareGraphicsExtensions command tells LATEX which extensions to try if
a file with no extension is specified in the \includegraphics command.

For convenience, a default set of extensions is pre-defined depending on which
graphics driver is selected. For example if the graphicx package uses the dvips driver,
the following graphic extensions (defined in dvips.def) are used by default

\DeclareGraphicsExtensions{.eps,.ps,.eps.gz,.ps.gz,.eps.Z}

If the graphicx package uses the pdftex driver, the following graphic extensions
(defined in pdftex.def) are used by default

\DeclareGraphicsExtensions{.png,.pdf,.jpg,.mps}

With the dvips graphics extension list, \includegraphics{file} first looks for
file.eps, then file.ps, then file.eps.gz, etc. until a file is found. This allows
the graphics to be specified with

\includegraphics{file}

instead of

\includegraphics{file.eps}

The first syntax has the advantage that if you later decide to compress file.eps,
you need not edit the LATEX file. The extensionless syntax also allows the document
to be processed by either LATEX or pdfLATEX as described in Section 7.4 on Page 23.

However, the extensionless syntax can aggravate pool space problems as described
in Section 9.1.2 below.

29

9.1.1 Filenames Without Extensions

Note that
\includegraphics{file}

does not attempt to open file unless the null extension {} is included in the exten-
sion list. For example,

\DeclareGraphicsExtensions{.eps,.eps.gz,{}}

causes file to be attempted if file.eps and file.eps.gz are not found.
Since the default extension list does not include the null extension, users wanting

to use extensionless files must use the \DeclareGraphicsExtensions command to
define an extension list that includes the null extension.

9.1.2 Pool Space Problems

Specifying no file extension and relying on LATEX to choose the correct extension from
the \DeclareGraphicsExtensions extension list can aggravate pool space problems
(see Section 13.4 on Page 41). If pool space is a concern, commands without an
extension such as

\includegraphics{file}

should only be used when a \DeclareGraphicsExtensions command has specified
a minimal number of extensions, such as

\DeclareGraphicsExtensions{.eps,.eps.gz}

9.2 The DeclareGraphicsRule Command

The \DeclareGraphicsRule command specifies how \includegraphics should treats
file, depending on their extensions.

Syntax: \DeclareGraphicsRule{ext}{type}{sizefile}{command}

For example, the command
\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

specifies that any file with a .eps.gz extension is treated as compressed eps file, with
the the BoundingBox information stored in the file with a .eps.bb extension, and the
gunzip -c command uncompresses the file. (Since LATEX cannot read BoundingBox
information from a compressed file, the BoundingBox line must be stored in an
uncompressed file.)

The \DeclareGraphicsRule allows * to signify any unknown extension. For
example,

Table 4: DeclareGraphicsRule Arguments

ext The file extension.
type The graphics type for that extension.
sizefile The extension of the file which contains the BoundingBox information for the graph-

ics. If this option is blank, then the size information must be specified by the
\includegraphics command’s bb option.

command The command to be applied to the file. (often left blank). The command must be
preceded by a single backward quote (not to be confused with the more common
single forward quote.) Currently, only dvips allows execution of such a command.
See Section 14 on Page 42 for examples of using this command for use with com-
pressed and non-eps graphics.

30

\DeclareGraphicsRule{*}{eps}{*}{}

causes any unknown extension to be treated as an eps file. For example, this causes
file.EPS) to be treated as an eps file.

The extension is defined as the portion of the filename after the first period,Periods In
Filenames which makes it possible for files ending in eps.gz to be identified as compressed

eps files. To avoid confusion, the base portion of the filename should not contain a
period. For example, specifying file.name.eps.gz makes \includegraphics look
for a graphics rule associated with the extension name.eps.gz. Since such a graphics
rule probably does not exist, the graphics rule for the unknown extension is used.
(Filenames with multiple periods work if their type happens to be the default type.
For example, when files with unknown extensions are treated as eps, the filename
file.name.eps is coincidently treated correctly.)

For convenience, a default set of graphics rules is pre-defined depending on whichPre-defined
Commands graphics driver is selected. For example if the dvips driver is used, the following

graphic rules (defined in dvips.def)15 are used by default
\DeclareGraphicsRule{.eps}{eps}{.eps}{}

\DeclareGraphicsRule{.ps}{eps}{.ps}{}

\DeclareGraphicsRule{.pz}{eps}{.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.eps.Z}{eps}{.eps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.ps.Z}{eps}{.ps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.pcx}{bmp}{}{}

\DeclareGraphicsRule{.bmp}{bmp}{}{}

\DeclareGraphicsRule{.msp}{bmp}{}{}

\DeclareGraphicsRule{*}{eps}{*}{}

The first two commands define the .eps and .ps extensions as eps files. The next
five commands define extensions for compressed eps files. The next three commands
define extensions for pcx, bmp, msp bitmaps. The last command causes filenames
with unknown extensions to be treated as an eps file.

If the pdfTEX driver is used, the following graphic rules16 (defined in pdftex.def)
are used by default

\DeclareGraphicsRule{.png}{png}{.png}{}

\DeclareGraphicsRule{.pdf}{pdf}{.pdf}{}

\DeclareGraphicsRule{.jpg}{jpg}{.jpg}{}

\DeclareGraphicsRule{.mps}{mps}{.mps}{}

which specify the behavior for pdfTEX’s supported graphic formats.

15The code in dvips.def actually does not use \DeclareGraphicsRule but the effect is the same.

16The pdftex.def file actually checks the pdfTEX version and includes logic to define only the
graphics rules which that version can handle

31

Part III

Using Graphics-Inclusion Commands

10 Horizontal Spacing and Centering

10.1 Horizontal Centering

The placement of the graphic is controlled by the current text justification. To center
the graphic, put it inside a center environment

\begin{center}
\includegraphics[width=2in]{graphic}

\end{center}

If the \includegraphics command is inside an environment (such as minipage or
figure), the \centering declaration centers the remaining output of the environ-
ment. For example

\begin{figure}
\centering
\includegraphics[width=2in]{graphic}

\end{figure}

is similar to

\begin{figure}
\begin{center}

\includegraphics[width=2in]{graphic}
\end{center}
\end{figure}

The \centering syntax is preferred because the \begin{center} syntax produces
double vertical space above and below the figure due to the space produced by
the figure environment and by the center environment. If extra vertical space is
desired, the commands in Section 19.1 on Page 64 should be used.

Bugs in the \psfig and \epsfbox commands made it difficult to produce horizontally-Obsolete
Syntax centered graphics. The TEX commands \centerline and \leavevmode were used

as work-arounds for bugs in \psfig and \epsfbox.
Since the \includegraphics command is written correctly, the \centerline

and \leavevmode commands are no longer needed, allowing graphics to be centered
with the \centering command or the center environment.

10.2 Horizontal Spacing

It is important to realize that LATEX arranges graphics the same way it formats other
objects such as letters. For example, an interword space is introduced between LATEX
input lines unless the line ends with a %. For example, just as

Hello
World

put an interword space between “Hello” and “World”

\includegraphics{file}
\includegraphics{file}

puts an interword space between the graphics. Ending the first line with a comment
character

\includegraphics{file}%
\includegraphics{file}

32

puts no space between the graphics. When horizontal spacing is desired between
graphics, the \hspace command inserts a specific amount of space17 while \hfill
inserts a rubber length which provides which expands to fill the available space. For
example,

\includegraphics{file}\hfill\includegraphics{file}

pushes the graphics to the left and right margins, while

\hfill\includegraphics{file}%
\hfill\includegraphics{file}\hspace*{\fill}

puts equal spacing before, between, and after the graphics. Since \hfill commands
which occur before a linebreak are ignored, the \hspace*{\fill} was needed to
supply the trailing space.

In addition to the \hspace and \hfill commands, the \quad command insertsOther
Spacing

Commands
horizontal space equal to the current font size (for example, when using 10 pt font,
\quad inserts 10 pt of horizontal space). The command \qquad inserts twice as much
horizontal space as \quad.

11 Rotation, Scaling, and Alignment

11.1 Difference Between Height and Totalheight

Care must be taken with the height option, as users often mean the overall height
which is set by the totalheight option (see Figure 1 on Page 11). When the object
has zero depth, the totalheight is the same as the height and specifying height
works fine. When the object has a non-zero depth, specifying height instead of
totalheight causes either an incorrectly-sized graphic or a divide-by-zero error.
For importing eps files, the distinction between height and totalheight is most
important when rotating and then scaling a graphic. For example,

\includegraphics[angle=-45,totalheight=1in]{file}
\includegraphics[angle=-45,height=1in]{file}

The first command scales the rotated graphic such that its total height is 1 inch.
The second command scales the rotated graphics such that the portion above its
reference point is 1 inch tall.

11.2 Scaling of Rotated Graphics

When the height or width of a graphic is specified, the specified size is not the size of
the graphic but rather of its BoundingBox. This distinction is especially important
in the scaling of rotated graphics. For example

\begin{center}
\includegraphics[totalheight=1in]{rosette}
\includegraphics[angle=45,totalheight=1in]{rosette}
\includegraphics[angle=90,totalheight=1in]{rosette}

\end{center}

produces

17Instead of making the \hspace amount a fixed length such as 1 inch, making the \hspace amount
a function of \linewidth or \em increases a document’s portability.

33

Although it may seem strange that the graphics have different sizes, it should make
sense after viewing the BoundingBoxes

Each graphic is scaled such that its rotated BoundingBox is 1 inch tall. The scaling
scales the size of the BoundingBox not the size of visible graphics.

11.3 Alignment of Rotated Graphics

11.3.1 Example #1

When graphics are rotated, the objects may not align properly. For example
\begin{center}
\includegraphics[totalheight=1in]{rosette}
\includegraphics[totalheight=1in,angle=-45]{rosette}
\includegraphics[totalheight=1in,angle=-90]{rosette}

\end{center}

produces

Again, this is better illustrated by the BoundingBoxes

34

In this case, the objects’ reference points (original lower-left corners) are aligned on a
horizontal line. If it is desired to instead have the centers aligned, the origin option
of \includegraphics can be used

\begin{center}
\includegraphics[totalheight=1in]{rosette}
\includegraphics[totalheight=1in,origin=c,angle=-45]{rosette}
\includegraphics[totalheight=1in,origin=c,angle=-90]{rosette}

\end{center}

This aligns the centers of the graphics

11.3.2 Example #2

Similarly, the commands

\begin{center}
\includegraphics[width=1in]{graphic}
\hspace{1in}
\includegraphics[width=1in,angle=-90]{graphic}

\end{center}

rotate the right-hand graphic around its lower-left corner, producing

Graphic

G
raphic

To align the bottoms of the graphics, use the following commands

\begin{center}
\includegraphics[width=1in]{graphic}
\hspace{1in}
\includegraphics[width=1in,origin=br,angle=-90]{graphic}

\end{center}

which rotate the right graphic about its lower-right corner, producing

Graphic

G
raphic

35

11.4 Minipage Vertical Alignment

It is often useful to place graphics inside of minipage environments (for example, see
Section 28 on Page 104). When minipages are placed side-by-side, LATEX places them
such that their reference points are vertically aligned. By default, the minipage’s
reference point is vertically centered on its left edge. An optional argument modifies
the location of a minipage’s reference point.

[b] causes the minipage’s reference point to be vertically aligned with the reference
point of the bottom line in the minipage.

[t] causes the minipage’s reference point to be vertically aligned with the reference
point of the top line in the minipage.

Note the [b] does not put the reference point at the bottom of the minipage. Like-
wise, the [t] does not put the reference point at the top of the minipage.

When the minipage contains only one line, the [b] and [t] options produce the
same results. For example, both

\begin{center}

\begin{minipage}[b]{.25\linewidth}

\centering

\includegraphics[width=1in]{graphic}

\end{minipage}%

\begin{minipage}[b]{.25\linewidth}

\centering

\includegraphics[width=1in,angle=-45]{graphic}

\end{minipage}

\end{center}

and
\begin{center}

\begin{minipage}[t]{.25\linewidth}

\centering

\includegraphics[width=1in]{graphic}

\end{minipage}%

\begin{minipage}[t]{.25\linewidth}

\centering

\includegraphics[width=1in,angle=-45]{graphic}

\end{minipage}

\end{center}

produce Figure 4. In both of these cases, reference point of the minipage is the
reference point (original lower-left corner) of the eps graphic.

Graphic
Graphic

Figure 4: minipages with [b] or [t] options

11.4.1 Aligning the Bottoms of Minipages

One method for aligning the bottoms of minipages is to force the minipage baseline
be the bottom of the minipage. Recall that the minipage [b] option makes the
minipage baseline be the baseline of the minipage’s bottom line.

36

If the bottom line of the minipage happens to have zero depth, then the last
line’s reference point is the bottom of the line and then the minipage [b] option
would make the minipage baseline be the bottom of the minipage. Similarly, if a line
with zero height and zero depth is added just before \end{minipage}, then the [b]
option makes the minipage’s baseline be the bottom of the minipage.

The command \par\vspace{0pt} creates such a zero-height, zero-depth line.
Since the baseline of this zero-depth line is the bottom of the minipage, the [b]
option now aligns the bottom of the minipage. For example

\begin{center}

\begin{minipage}[b]{.25\linewidth}

\centering

\includegraphics[width=1in]{graphic}

\par\vspace{0pt}

\end{minipage}%

\begin{minipage}[b]{.25\linewidth}

\centering

\includegraphics[width=1in,angle=-45]{graphic}

\par\vspace{0pt}

\end{minipage}

\end{center}

produces Figure 5.

Graphic

Graphic

Figure 5: Minipages with Bottoms Aligned

11.4.2 Aligning the Tops of Minipages

When a zero-height, zero-depth line is added to the top of the minipage, the [t]
option makes the minipage baseline be the top of the minipage. When this is done
with multiple side-by-side minipages, the tops of the minipages are aligned.

The command \vspace{0pt} inserts a zero-height, zero-depth line at the top of
the minipage. Since the baseline of this zero-height line is the top of the minipage,
the [t] option now aligns the top of the minipage. For example

\begin{center}

\begin{minipage}[t]{.25\linewidth}

\vspace{0pt}

\centering

\includegraphics[width=1in]{graphic}

\end{minipage}%

\begin{minipage}[t]{.25\linewidth}

\vspace{0pt}

\centering

\includegraphics[width=1in,angle=-45]{graphic}

\end{minipage}

\end{center}

produces Figure 6.
This aligns the tops of the minipages with the current baseline. If it is instead desired
to align the tops of the minipages with the top of the current line of text, replace
\vspace{0pt} with \vspace{-\baselineskip}. This topic is mentioned in [3, pages
863-865].

37

Graphic Graphic

Figure 6: Minipages with Tops Aligned

12 Overlaying Two Imported Graphics

This section describes how to overlay two graphics. Note that there is no guaran-
tee that the top graphic is transparent; it may have been created with an opaque
background that hides the bottom graphic.

For example18, the files left.eps and right.eps contain the graphics shown in
Figure 7, then the commands

\makebox[0pt][l]{\includegraphics{left.eps}}%
\includegraphics{right.eps}

overlay the two graphics, as shown in Figure 8. The graphics are overlaid with their
reference (lower-left) points coincident. In this particular example, the graphics had
identical natural sizes so they overlaid perfectly without any scaling. Other pairs of
graphics may require scaling (by \includegraphics, \scalebox, or \resizebox) to
achieve the desired overlaying.

This overlaying code may seem mysterious unless one understands the \makebox
command. The \makebox[0pt][l]{...} creates a zero-width box in which its ar-
gument is placed. When a width is specified (0 pt in this case), the typesetting
algorithms allocate this much horizontal space regardless of the actual width of the
contents. Thus, a left-justified zero-width box causes the LATEX objects following the
box to be typeset on top of the contents of the box.

Left

(a) Contents of left.eps

Right

(b) Contents of right.eps

Figure 7: Contents of Graphics Files

Left Right

Figure 8: Two overlaid graphics

18Although this example overlays two eps files, similar code can be used for overlaying other
graphic formats.

38

12.1 Overpic Package

Another method for overlaying graphics is the overpic package, which defines a pic-
ture environment which is the size of the included graphic. See the overpic package
documentation [27] for details.

13 Using Subdirectories

When importing a large number of graphics files, it may be desirable to store the
graphics files in a subdirectory. For example, when the subdirectory is named sub,
one may be tempted to then include the file file.eps with the following command

\includegraphics{sub/file.eps}

While this syntax works for most Unix and dos TEX distributions, there are problems
with such usage

Inefficiency

Whenever TEX opens a file, the filename is saved in TEX memory. When
opening a large number of files, this lost memory may cause a poolsize error (see
Section 13.4 on Page 41). Since explicitly specifying subdirectories increases
the filename length, it aggravates this pool space problem.

Unportability

One of LATEX’s advantages is that its files can be used on any platform. How-
ever, embedding the subdirectory in the filename results in the file becoming
operating-system dependent. The file now cannot be used on vms or Macintosh
computers without significant modification.

Instead of embedding the subdirectory in the filename, there are two other options

1. The best method is to modify the TEX search path (see Section 13.1 on Page 39).

2. Another method is to specify sub/ in a \graphicspath command (see Sec-
tion 13.3 on Page 40). However, this is much less efficient than modifying the
TEX search path.

Both of these options causing \includegraphics to automatically search the graph-
ics subdirectory, allowing

\includegraphics{sub/file.eps}

to be replaced with
\includegraphics{file.eps}

13.1 TEX Search Path

Since the method for changing the directories in which TEX looks depends on the
TEX distribution, it becomes very complicated to provide a general description. As
an example, this section describe the strategy used by the web2c/teTeX Unix dis-
tributions. Although the method for changing the search path differs for other TEX
distributions, most employ similar strategies.

For web2c/teTeX Unix distributions, the TEX search path can be modified by
setting the TEXINPUTS environment variable. When using csh shells,

setenv TEXINPUTS /dir1:/dir2:

causes /dir1 and /dir2 to be searched before the default directories. Without the
trailing colon, the default directories are not be searched. Setting TEXINPUTS with

39

setenv TEXINPUTS :/dir1:/dir2

causes /dir1 and /dir2 to be searched after the default directories, while
setenv TEXINPUTS /dir1::/dir2

causes /dir1 to be searched before the default directories and /dir2 to be searched
after the default directories.

Putting // after a directory causes all of its subdirectories to be searched. For
example,

setenv TEXINPUTS /dir1//:/dir2:

causes all the subdirectories (and sub-subdirectories) of /dir1 to be searched. Be
careful in using // as it may slow down the searching if the directory contains many
files.

These examples also work for sh shells, although the syntax should be changed to
TEXINPUTS="/dir1:/dir2:"; export TEXINPUTS

When LATEX finds files on the TEX path, it does not include the entire filename in
the dvi file. As a result, old versions of dvips or xdvi which do not search the TEX
path cannot find the file (see Section 14.4 on Page 44).

13.2 Temporarily Changing the TEX Search Path

This section describes how a Unix shell script can temporarily change the TEX Search
Path in order to find project-specific graphics files. Users can then construct a sepa-
rate shell script for each of their projects, with each script specifying the directories
that are unique to those projects.

For example, suppose a user is writing a journal paper and wants to create a
unix shell script latex paper that replaces the latex command. Create a file named
latex paper on the Unix search path containing

#!/bin/sh
TEXINPUTS= ~/PAPER/SUB1/:~/PAPER/SUB2/:$TEXINPUTS latex $@

Make the file executable with
chmod u+x latex_paper

Once this is done, typing
latex_paper file.tex

adds ~/PAPER/SUB1/:~/PAPER/SUB2/ to the beginning of TEXINPUTS before latex
file.tex is run, allowing LATEX to find any graphics stored in the ~/PAPER/SUB1/
or ~/PAPER/SUB2/ subdirectories.

A similar script called dvips paper would also need to be written in order for
dvips to find the graphics during dvi-to-ps conversion.

13.3 Graphics Search Path

By default, LATEX looks for graphics files in any directory on the TEX search path.
In addition to these directories, LATEX also looks in any directories specified in the
\graphicspath command. For example,

\graphicspath{{dir1/}{dir2/}}

tells LATEX to also look for graphics files in dir1/ and dir2/. For Macintosh, this
becomes

\graphicspath{{dir1:}{dir2:}}

40

It is important to note that the file-searching associated with \graphicspath direc-
tories is much slower than that associated with TEXINPUTS directories. Furthermore,
each file search done in a \graphicspath directory consumes additional pool space
(see Section 13.4 on Page 41).

Due to these inefficiencies, use of \graphicspath is generally discouraged. In-
stead, it is usually better to specify subdirectories by modifying the TEX search path
(see Section 13.1 on Page 39).

13.4 Conserving Pool Space

TEX reserves a portion of its memory called pool space for its internal passing of
strings. Whenever TEX opens a file (or tries to open a file), some pool space is
permanently used. When opening a large number of files, this lost memory may
cause TEX to run out of pool space, causing an error similar to

! TeX capacity exceeded, sorry [poolsize=72288]

Since the amount of lost pool space is a function of the length of the filename,
specifying subdirectories aggravates this pool space problem.

With the exception of the latest web2c version and some commercial distributions,
the only way to increase the pool size is to recompile TEX. Fortunately, the following
pool-conservation rules usually solve the problem.

• Avoid excessively-long file names.
• Don’t include the subdirectory names

\includegraphics{sub/file.eps}

Instead, change the TEX search path or move the files out of the subdirectory.
• Don’t use the \graphicspath command.

\graphicspath{{dir1/}{dir2/}}
...
\includegraphics{file.eps}

causes \includegraphics to try to open the following files
file.eps
dir1/file.eps
dir2/file.eps

Each of these attempts consumes pool space. Instead of using \graphicspath,
modify the TEX search path.

• Specify the entire filename, do not omit the files extension/suffix (e.g., .eps).
With the default \DeclareGraphicsExtensions (see Section 9.1 on Page 29),
the command

\includegraphics{file}

causes \includegraphics to try to open the following files
file.eps
file.ps
file.eps.gz
file.ps.gz
file.eps.Z

This is especially inefficient when used in conjunction with \graphicspath.

Issuing a \DeclareGraphicsExtensions command with a minimal number of
extensions minimizes the inefficiency of omitting the extension.

41

Note that \includegraphics only consumes pool space when it opens or attempts to
open a file. Since \includegraphics opens files to determine the graphic’s Bound-
ingBox, an effective but inconvenient method of preventing pool space consumption
is to specify the BoundingBox parameters with the \includegraphics command’s
bb option (see Table 1 on Page 25).

14 Compressed and Non-EPS Graphics Files in dvips

As described in Section 1, for dvips-style documents, LATEX shifts the graphics-
insertion burden onto the dvi programs. This means that a LATEX document can
use any graphic format which is supported by the dvi program.

While virtually all dvi-to-ps converters support insertion of eps graphics, few
converters support non-eps graphics. This means the using non-EPS graphics with
a dvips-style document generally requires converting the non-eps graphics into eps
form. This can be done in two ways:

Convert the ahead of time Before dvi-to-ps conversion, use a graphics-conversion
program to convert the non-eps graphic into eps format. This converted eps
file is stored and subsequently used by the dvi-to-ps converter.

Convert on-the-fly During the dvi-to-ps conversion, the dvi-to-ps converter calls
a graphics-conversion program, with the graphics-conversion output being piped
back into dvi-to-ps converter and inserted into the final ps file.

The disadvantage of converting ahead of time is that it requires storage of a sec-
ond version of the graphics file. Although the “Convert on-the-fly” procedure does
not require the additional storage, the same graphics-conversion computations are
repeated at every dvi-to-ps execution. This is a storage-vs-speed tradeoff, but most
users prefer the speed of the “Convert ahead of time”.

Rather than directly incorporating graphics-conversion routines, dvips provides
a mechanism for calling external conversion programs19. This mechanism can be
accessed from LATEX by use command argument of \DeclareGraphicsRule. This is
more flexible than direct support because it keeps the graphics-conversion uncoupled
from the dvi-to-ps conversion, allowing users to use the graphics-conversion program
of their choice.

When using dvips and an operating system which supports pipes20 one can
use \DeclareGraphicsRule (see Section 9.2 on Page 30) to specify an operation to
be performed on the file. Making this operation a decompression command allows
compressed graphics files to be used. Making this operation a graphics-conversion
command allows non-eps graphics files can be used.

Since dvips is currently the only dvi-to-ps converter with this capability, every-
thing in this section requires dvips. Users need to pass the dvips option to the
graphicx package. This can be done by either specifying the dvips global option in
the \documentclass command

\documentclass[dvips,11pt]{article}
or by specifying the dvips option in the \usepackage command

\usepackage[dvips]{graphicx}

Specifying the dvips option in \documentclass it is preferred because it passes the
dvips option to all packages.

19This requires an operating system which supports pipes. For example, Unix supports pipes
while dos does not.

20For example, Unix supports pipes while dos does not.

42

14.1 Compressed EPS Example

The steps for using compressed eps files are

1. Create an eps file (file1.eps for example)

2. Store the BoundingBox line in another file (file1.eps.bb)
3. Compress the eps file. For example, on many platforms, the command

gzip -9 file1.eps

creates the compressed file file1.eps.gz. The -9 (or -best) option specifies
maximum compression.

4. Include the proper \DeclareGraphicsRule command before the \includegraphics
command in the LATEX file. The \DeclareGraphicsRule command informs
LATEX how to treat the particular suffix (see Section 9.2 on Page 30). For
example

\documentclass[dvips]{article}

\usepackage{graphicx}

\begin{document}

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

\begin{figure}

\centering

\includegraphics[width=3in]{file1.eps.gz}

\caption{Compressed EPS Graphic}

\label{fig:compressed:eps}

\end{figure}

\end{document}

In this particular case, the \DeclareGraphicsRule command is actually not neces-
sary because it happens to be one of the graphics rules pre-defined in dvips.def.
If another compression program or suffixes were used, the \DeclareGraphicsRule
command would be mandatory. For example, if the BoundingBox file had been stored
in file1.bb, the corresponding \DeclareGraphicsRule would be

\DeclareGraphicsRule{.eps.gz}{eps}{.bb}{‘gunzip -c #1}

14.2 Non-EPS Graphic Files

While it is easy to insert eps graphics into LATEX documents, it is not as straight-
forward to insert non-eps graphics (gif, tiff, jpeg, pict, etc.). A simple solution
is to determine whether the application which generated the non-eps graphic also
generates eps output. If not, a graphics-conversion program (see Section 6.2 on
Page 17) must be used to convert the graphics to PostScript.

Since a non-eps graphics file may be smaller than the corresponding eps file,
it may be desirable to keep the graphics in a non-eps format and convert them to
PostScript when the dvi file is converted to PostScript. If dvips is used, this on-the-
fly conversion can be specified by the command option in \DeclareGraphicsRule.
For example, using on-the-fly conversion to insert file2.gif into a LATEX document
requires the following steps

1. Find a gif-to-eps conversion program (assume it’s called gif2eps)

2. One needs to create a BoundingBox file which specifies the natural size of the
file2.gif graphics. To do this, convert file2.gif to PostScript and

(a) If the PostScript file contains a BoundingBox line, save the BoundingBox
line in file2.gif.bb

43

(b) If the PostScript file contains no BoundingBox line, determine the appro-
priate BoundingBox (see Section 3.2 on Page 12) and place those numbers
in a %%BoundingBox: line in file2.gif.bb

3. Keep file2.gif and file2.gif.bb and delete the PostScript file.

4. Include \DeclareGraphicsRule{.gif}{eps}{.gif.bb}{‘gif2eps #1}
before the \includegraphics command in the LATEX file.

When \includegraphics{file.gif} is issued, LATEX reads the BoundingBox from
file.gif.bb and tells dvips to use gif2eps to convert file.gif to eps.

14.3 GIF Example

While the commands necessary for including non-eps graphics are dependent on
the operating system and the graphics conversion program, this section provides
examples for two common Unix conversion programs. The commands

\DeclareGraphicsRule{.gif}{eps}{.gif.bb}{‘convert #1 ’eps:-’ }
\begin{figure}

\centering
\includegraphics[width=3in]{file2.gif}
\caption{GIF Graphic}

\end{figure}

use the convert program (part of the ImageMagick package) package to translate
the gif file into eps. The command

convert file2.gif ’eps:-’

translates file2.gif into eps format (specified by the “eps:” option), sending the
result to standard output (specified by the “-” specification).

Alternatively, one can use the ppm utilities in which giftoppm, ppmtopgm, and
pgmtops convert the gif file to eps via the ppm and grayscale pgm formats. In Unix,
the piping between these programs is specified by the following \DeclareGraphicsRule
command

\DeclareGraphicsRule{.gif}{eps}{.gif.bb}{‘giftoppm #1 | ppmtopgm | pgmtops}

14.4 TEX Search Path and dvips

When LATEX encounters an \includegraphics command, it looks in the current
directory for the file. If it does not find the file in the current directory, it searches
through the TEX path for the file. When the dvi file is converted to PostScript,
dvips performs the same search routine and everything works well. However, when
an on-the-fly command is specified in the \DeclareGraphicsRule command, the
on-the-fly command prevents dvips from properly searching the TEX path.

For example, the rule
\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

specifies that the gunzip -c command be used on files having a .eps.gz suffix.
Suppose the following command is used

\includegraphics{file.eps.gz}

If file.eps.gz and file.eps.bb are in the current directory, the path-searching is
not needed and everything works well. LATEX uses file.eps.bb and dvips executes
gunzip -c file.eps.gz to uncompress the file.

However, things don’t work if file.eps.gz and file.eps.bb are not in the cur-
rent directory. If they are instead in the directory /a/b/c/ (on the TEX path), LATEX
searches the path to find /a/b/c/file.eps.bb. However, problems occur when

44

dvips executes ‘gunzip -c file.eps.gz because gunzip cannot find file.eps.gz.
If the TEX distribution uses a recent kpathsea library (as does the teTeX distribu-
tion), this problem can be solved by the following graphics rule

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}%
{‘gunzip -c ‘kpsewhich -n latex tex #1‘}

which uses kpsewhich to find the file for gunzip. The

‘kpsewhich -n latex tex #1

command causes dvips look for the compressed file on the TEX search path. The
full filename (including subdirectories) is then appended to the gunzip -c command,
allowing gunzip to find the file even though it is not in the current directory.

While this new \DeclareGraphicsRule command can be placed at the begin-
ning of every document, it may be more convenient to add the following to the
graphics.cfg file

\AtEndOfPackage{%
\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}%

{‘gunzip -c ‘kpsewhich -n latex tex #1‘}}

and leaving the existing \ExecuteOptions{dvips} line.

15 The PSfrag Package

While there are many drawing and analysis packages which produce eps files, most
do not support symbols and equations as well as LATEX. The psfrag package allows
LATEX users to replace text strings in eps files with LATEX text or equations.

Table 5: PSfrag Options

PStext Text in eps file to be replaced.
posn (Optional, Defaults to [Bl].) Position of placement point relative to new LATEX

text.
PSposn (Optional, Defaults to [Bl].) Position of placement point relative to existing eps

text.
scale (Optional, defaults to 1.) Scaling factor for the text. For best results, avoid using

the scaling factor and instead use LATEX type-size commands such as \small and
\large

rot (Optional, defaults to zero.) When an angle is specified, it is the angle of rotation
of the new text relative to the existing text. The angle is in degrees with a counter-
clockwise rotation being positive.
This option is especially useful when dealing with applications which only allow
horizontal text in their eps files.

text The LATEX text to insert into the eps graphic.
Like regular LATEX text, math formulas must be enclosed by dollar signs (e.g.,
$\frac{1}{2}$ or x^2).

psfrag 3.0 was totally re-written and released in November 1996. Previous ver-
sions of psfrag required running a preprocessor (such as ps2frag or ps2psfrag) to
identify and tag all the text in the eps file. Since psfrag 3.0 requires no preprocess-
ing, it does not require any external programs such as perl or ghostscript. psfrag
3.0 only requires a recent LATEX and the graphics bundle distributed with LATEX.
Reference [29] provides complete documentation on psfrag 3.0.

45

An additional benefit of psfrag rewrite is that it now supports compressed eps
graphics. However, the \tex command (described in Section 15.3 on Page 48) cannot
be used to embed LATEX text in compressed graphics.

To use psfrag, create an eps file and then perform the following steps

1. Include \usepackage{psfrag} in the preamble of the LATEX document.

2. In the document, use the \psfrag command to specify the eps text to replace
and the LATEX string to replace it. This makes the specified substitution occur
in any subsequent \includegraphics command issued in the same environ-
ment.

3. Use the \includegraphics command as usual.

The LATEX \psfrag command has the following syntax

\psfrag{PStext}[posn][PSposn][scale][rot]{text}

with its arguments described in Table 5.
The posn and PSposn options are one of the 12 points (such as [tl], [br], [cc])

shown in Figure 3 on Page 28. If the optional arguments are not issued, the point
defaults to [Bl]. Any missing letters default to c (e.g., [] and [c] are equivalent
to [cc], [l] is equivalent to [lc]). See [29] for examples of various combinations of
placement points.

Note that \psfrag matches entire text strings. Thus the command
\psfrag{pi}{π}

replaces the string pi with π, but does not affect the strings pi/2 or 2pi. Separate
\psfrag commands must entered for these strings.

psfrag cannot perform the replacement unless the entire eps string is constructedProblems
with Kerning with a single PostScript command. Some programs break string up into sub-strings

or individual letters in order to perform kerning. For example, Corel Draw produced
the following eps code to place the string “Hello World”

0 0 (Hello W) @t
1080 0 (orld) @t

Since psfrag sees this as two unrelated strings “Hello W” and “orld”, it cannot
perform any replacement of “Hello World”. If the kerning cannot be manually turned
off, using Courier or other monospaced fonts often prevents the kerning21. If the
kerning cannot be avoided, only single-character replacement strings can be used.

15.1 PSfrag Example #1

The commands
\includegraphics{pend.eps}

include the graphic without any psfrag replacement, producing Figure 9. The com-
mands

\psfrag{q1}{θ_1}
\psfrag{q2}{θ_2}
\psfrag{L1}{L_1}
\psfrag{L2}{L_2}
\psfrag{P1}[][]{P_1}
\psfrag{P2}[][]{\large P_2}
\includegraphics{pend.eps}

21In order to avoid kerning, the font may need to be set to Courier before the text is created.
That is, creating the text and then converting it to Courier may still result in kerning.

46

include the graphic with psfrag replacement, producing Figure 10. The first four
\psfrag commands position the new LATEX text such that its left baseline point cor-
responds to the left baseline point of the eps text. The last two \psfrag commands
use the [][] options to position the LATEX text such that its center corresponds
to the center of the eps text. Note that the N tag in Figure 10 is left unchanged,
showing that not all eps text has to be replaced.

L1 N

P1q1

q2

L2

P2

Figure 9: Without PSfrag Replacement

N

θ1

θ2

L1

L2

P1

P2

Figure 10: With PSfrag Replacement

15.2 PSfrag Example #2

This example demonstrates how the \shortstack, \colorbox, and \fcolorbox com-
mands can be used with \psfrag.

shortstack The \shortstack command allows text to be stacked vertically, which
can be used to substitute multiple lines of text for a single line of text. The
lines of text are separated by the \\ command.

colorbox The \colorbox command (part of the color package, which is distributed
with LATEX) places a rectangular color background behind an object. The
distance that the background extends beyond the object is controlled by the
\fboxsep length. For example,

\colorbox{white}{text}

places a rectangular white background behind text. See the graphics bundle
documentation [7] for details on \colorbox.

With psfrag, \colorbox is useful for placing text at a location where lines or
shading would make it difficult to view the text. Placing a white background
behind the text prevents the drawing from obstructing the text.

fcolorbox The \fcolorbox command (also part of the color package) is similar to
the \colorbox command, except that a frame is drawn around the background.
The command \fcolorbox{black}{white}{text} puts a white background
with a rectangular black frame behind text.

The thickness of the frame is controlled by the length \fboxrule and the
spacing between the frame and the text/object is controlled by the length
\fboxsep.

Figure 11 shows the graphic without psfrag substitution. The commands
\psfrag{q1}[][]{\colorbox{white}{q_1}}
\psfrag{base}{\fcolorbox{black}{white}{Base}}
\psfrag{Actuator}[l][l]{\shortstack{Hydraulic\\ Actuator}}
\includegraphics{mass.eps}

use psfrag to produce the graphics in Figure 12.

47

q1 Actuator

base

Figure 11: Without PSfrag Replace-
ment

q1

Base

Hydraulic

Actuator

Figure 12: With PSfrag Replacement

15.3 LATEX Text in EPS File

The recommended and most popular method for using psfrag is the \psfrag com-
mand described in the previous section. An alternative, less efficient, method for
using psfrag is the \tex command, which embeds the LATEX text directly in the eps
file. See [29] for more information.

15.4 Figure and Text Scaling with PSfrag

If a graphic using psfrag is scaled, the psfrag text is scaled along with the graphic.
As a result, a subtlety of the graphicx package affects the size of the text.

• When the width, height, or totalheight options are used to size the graphic

\includegraphics[width=3in]{file.eps}

the psfrag text is inserted after the scaling. Conversely,
\resizebox{3in}{!}{\includegraphics{file.eps}}

Includes the graphic at its natural size, inserts the psfrag text, and then scales
both the graphics and the text.

• Similarly, when scaling options are specified before rotation
\includegraphics[width=3in,angle=30]{file.eps}

the scaling is implicitly handled by the graphics inclusion function. However,
when scaling options are specified after rotation

\includegraphics[angle=30,width=3in]{file.eps}

the graphic is first included at its natural size, then rotated, and then scaled.
Since psfrag replaces the new text during the graphics inclusion, the second
command scales the new psfrag text while the first command does not. When
the included size of the eps graphic greatly differs from its natural size, the
two commands produce very different results.

See [29] for more information on the scaling of psfrag text.

15.5 PSfrag and PDFTEX

psfrag cannot be used with pdfTEX. If psfrag substitution is needed, one option is
to use the LATEX-to-dvi-to-PostScript-to-pdf route that was used before pdfTEX.
While this allows psfrag substitution, users lose the advantages that pdfTEX pro-
vides.

A better (although more laborious) method is to use psfrag indirectly with
pdfTEX. This allows psfrag substitution while also keeping the advantages of pdfTEX.

48

1. For each graphic that uses psfrag, create a separate LATEX file containing
the psfrag commands and the \includegraphics command. You must use
\pagestyle{empty} to prevent page numbers from being placed on the page.
Assume these psfrag LATEX files are named

GraphicFrag00.tex
GraphicFrag01.tex
...

2. At the operating system command line, perform the following steps
latex GraphicFrag00.tex
dvips -E GraphicFrag00
epstool --copy --bbox GraphicFrag00.ps GraphicFrag00.eps
epstopdf GraphicFrag00.eps

The first command creates GraphicFrag00.dvi. The second command cre-
ates GraphicFrag00.ps. The third command calculates the BoundingBox for
GraphicFrag00.ps and inserts the BoundingBox and contents of GraphicFrag00.ps
into GraphicFrag00.eps. The last command converts GraphicFrag00.eps into
pdf format.

3. Repeat step 2 for GraphicFrag01.tex, . . .
4. Use \includegraphics to include the resulting pdf files

GraphicFrag00.pdf
GraphicFrag01.pdf
...

into the original LATEX file.

5. Process the LATEX file with pdflatex.

16 Including An EPS File Multiple Times

When the same eps graphic is inserted multiple times, its eps code appears multiple
times in the final ps file. In particular, this often happens when a logo or other
graphics are inserted into a document’s header or footer. This section describes
improved methods for inserting a graphic multiple times22.

There are four common methods for including the same eps graphics many times

1. Use \includegraphics{file.eps} wherever you want the graphic. This has
two problems

(a) LATEX must find and read the file every time \includegraphics is used.
(b) The eps graphics commands are repeated in the final ps file, producing

a large file.

2. Save the graphics in a LATEX box and use the box wherever you want the
graphic. This saves LATEX time since it must only find and read the file once.
However, it does not reduce the size of the final PostScript file.
At the beginning of the file, include the following commands

\newsavebox{\mygraphic}
\sbox{\mygraphic}{\includegraphics{file.eps}}

22Although this document does not yet document it, users are encouraged to consider the
graphicx-psmin package[20], which provides a way to include a repeated PostScript graphic only
once in a PostScript document. This package only works when the dvi file is post-processed with
dvips version 5.95b or later.

49

Then use the command \usebox{\mygraphic} wherever you want the graphic.
(The graphics can be scaled by placing the \usebox command inside a \scalebox
or \resizebox command.)

3. When the eps file contains vector graphics (as opposed to bitmapped graphics),
it is possible to write a PostScript command which draws the graphics23. The
graphic can then be included by issuing the PostScript command wherever the
graphic is needed. Section 16.1 on Page 50 describes this procedure.

Since the final PostScript file includes the graphics commands only once, the
final PostScript file is much smaller. Note that since the graphics commands
are stored in printer memory while the final PostScript file is being printed,
this method may cause the printer to run out of memory and not print the
document.

Although this method results in a small final PostScript file, it still requires
LATEX to find and read the file containing the PostScript commands.

4. Like the previous method, define a PostScript command which draws the graph-
ics, but include this command in a LATEX box. This results in a small final
PostScript file and only requires LATEX to find and read the file once.

16.1 Defining a PostScript Command

This section describes how to created a PostScript command which draws the graph-
ics from an eps file containing vector graphics. This procedure does not work if the
eps file contains bitmapped graphics.

To convert the eps graphics into a PostScript command, the eps file must be
broken into two files, one which defines the PostScript dictionary and the graphics
commands, and another which includes the header information and the uses the
previously-defined PostScript command. For example, an eps file created by Xfig
has the form

%!PS-Adobe-2.0 EPSF-2.0

%%Title: /tmp/xfig-fig017255

%%Creator: fig2dev Version 2.1.8 Patchlevel 0

%%CreationDate: Sun Sep 3 15:36:01 1995

%%Orientation: Portrait

%%BoundingBox: 0 0 369 255

%%Pages: 0

%%EndComments

/$F2psDict 200 dict def

$F2psDict begin

...

%%EndProlog

$F2psBegin

...

$F2psEnd

23While it is possible to construct a PostScript command which draws vector graphics, it turns out
to be a “feature” of eps that is impossible to construct such a command for bitmapped graphics.
Bitmapped graphics are usually converted to eps by having the image (or colorimage) PostScript
operators read the current file as data. It is not possible to put such constructs into a PostScript
procedure. It is possible to change the eps file so that it passes the image data as PostScript strings
rather than reading the file, but this is difficult to automate and generally requires a fair amount of
hand editing of the PostScript.

Since most people are not PostScript experts, hand-editing the PostScript is generally not an
option. If the graphic can be described by PostScript vector primitives, it may be possible to use
the kvec program (see page 19) to successfully convert the graphic to vector format.

50

Where ... indicates unlisted commands. The eps file generally contains three parts

1. The header commands which begin with %

2. The Prolog section which starts with
/$F2psDict 200 dict def

and ends with
%%EndProlog

The Prolog defines the commands in the PostScript dictionary used by the eps
file. In this example, the dictionary is named $F2psDict although other names
can be used.

3. The last part contains the commands used to draw the graphics.
Suppose the above eps file is named file.eps. Create the files file.h and file.ps
where file.h contains

/$F2psDict 200 dict def

$F2psDict begin

...

%%EndProlog

/MyFigure {

$F2psBegin

...

$F2psEnd

} def

and file.ps contains
%!PS-Adobe-2.0 EPSF-2.0

%%Title: /tmp/xfig-fig017255

%%Creator: fig2dev Version 2.1.8 Patchlevel 0

%%CreationDate: Sun Sep 3 15:36:01 1995

%%Orientation: Portrait

%%BoundingBox: 0 0 369 255

%%Pages: 0

%%EndComments

$F2psDict begin MyFigure end

file.h defines the dictionary and defines the PostScript command /MyFigure, while
file.ps contains the header information and uses the PostScript command defined
in file.h. In particular, it is important that the file.ps header includes the
%!PS... line and the BoundingBox line. The graphics can then be used in the LATEX
document as

\documentclass{article}

\usepackage{graphicx}

\special{header=file.h}

\begin{document}

...

\includegraphics[width=2in]{file.ps}

...

\includegraphics[totalheight=1in]{file.ps}

...

\end{document}

Note that the original file file.eps is not used. Since the graphics commands in
file.h are only included once, the final PostScript file remains small. However,
this still requires LATEX to find and read file.ps whenever the graphics are used.
The following commands save the graphics in a LATEX box to produce a small final
PostScript file while reading file.ps only once.

\documentclass{article}

\usepackage{graphicx}

\special{header=file.h}

51

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics[width=2in]{file.ps}}

\begin{document}

...

\usebox{\mygraphic}

...

\resizebox*{1in}{!}{\usebox{\mygraphic}}

...

\end{document}

Like the previous example, these commands produce a 2-inch wide graphic and an-
other graphic whose totalheight is 1 inch.

16.2 Graphics in Page Header or Footer

An easy method of including graphics in the heading is to use the fancyhdr package
(an improved version of the old fancyheadings package) which is documented by [17].
The header consists of three parts: its left field, its center field, and its right field.
The \fancyhead command specifies the contents of the header fields, with the L,C,R
options specifying which field(s) the command modifies. For example

\pagestyle{fancy}
\fancyhead[C]{My Paper}

causes the center header field to be “My Paper”, while

\pagestyle{fancy}
\fancyhead[L,R]{\textbf{Confidential}}

causes both the left and right header fields to be “Confidential”. If no L,C,R option
is specified, it applies to all three header fields. Thus \fancyhead{} is used to clear
all the header fields. The \fancyfoot command similarly specifies the left, center,
and right footer fields.

The commands in the fancyhdr package can insert graphics in the headers andGraphics in
Page

Header/Footer
footers. For example, after splitting the eps file file.eps into the two file file.h
and file.ps as described in Section 16.1 on Page 50, the commands

\documentclass{article}

\usepackage{fancyhdr,graphicx}

\renewcommand{\headheight}{0.6in} %% must be large enough for graphic

\renewcommand{\textheight}{7.5in}

% Define PostScript graphics command

\special{header=file.h}

% Save graphics in LaTeX box

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics[totalheight=0.5in]{file.ps}}

\pagestyle{fancy}

\fancyhead{} % clear all header fields

\fancyhead[L]{\usebox{\mygraphic}}

\fancyfoot{} % clear all footer fields

\fancyfoot[C]{\thepage}

\renewcommand{\headrulewidth}{0.5pt}

\renewcommand{\footrulewidth}{0pt}

\begin{document}

...

\end{document}

52

places the graphics at the top left of each “fancy” page with a 0.5 pt horizontal line
drawn under the header. Additionally, the page number is placed at the bottom
center of each page, with no horizontal line drawn above the footer. Note that this
does not affect “plain” pages.

When the [twoside] documentclass option is used, one may want to individuallyOdd/Even
Headings specify the odd and even page headers/footers. The E,O \fancyhead options specify

the even and odd page headers, respectively. If the E,O options are not specified, the
command applies to both even and odd pages. Likewise the E,O \fancyfoot options
specify the even and odd page footers. For example,

\pagestyle{fancy}
\fancyhead[LE]{My Paper}
\fancyhead[RO]{My Name}
\fancyfoot[C]{\thepage}

places “My Paper” in the upper left of even fancy pages, “My Name” in the upper
right of odd fancy pages, and the page number in the bottom center of all fancy
pages. Replacing the

\fancyhead[L]{\usebox{\mygraphic}}

command in the above example with

\fancyhead[LE,RO]{\usebox{\mygraphic}}

places the graphic at the top outside (the left side of even pages, right side of odd
pages) of all fancy pages.

The \fancyhead commands only apply to pages whose style are “fancy”. EvenModifying
Plain Pages though \pagestyle{fancy} causes the document to have a fancy page style, some

pages (title pages, table of contents pages, the first page of chapters, etc.) are still
given a plain pagestyle by default.

The \fancypagestyle command can be used to modify the plain pagestyle. For
example, adding the following code to the above example causes the graphic to also
be placed at the upper left of plain pages.

\fancypagestyle{plain}{%
\fancyhead{} % clear all header fields
\fancyhead[L]{\usebox{\mygraphic}}
\fancyfoot{} % clear all footer fields
\fancyfoot[C]{\thepage}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}}

When the twoside documentclass option is used, replacing both of the

\fancyhead[L]{\usebox{\mygraphic}}

commands with

\fancyhead[LE,RO]{\usebox{\mygraphic}}

places the graphic at the top outside of every page (both plain and fancy).

16.3 Watermark Graphics in Background

In addition to adding graphics to the headers and footers, the fancyhdr package
can place graphics behind in the text, which is useful for creating a logo or seal
watermark.

The following example places the graphics in file.eps on every page (both fancy
and plain).

53

\documentclass{article}

\usepackage{graphicx,fancyhdr}

%%% store graphics in a box

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics[keepaspectratio,

height=0.8\textheight,

width=0.8\linewidth]{file.eps}}

\pagestyle{fancy}

\fancyhead{}

\fancyhead[C]{\setlength{\unitlength}{1in}

\begin{picture}(0,0)

\put(-2.2,-6){\usebox{\mygraphic}}

\end{picture}}

\fancypagestyle{plain}{%

\fancyhead{}%

\fancyhead[C]{\setlength{\unitlength}{1in}

\begin{picture}(0,0)

\put(-2.2,-6){\usebox{\mygraphic}}

\end{picture}}}

\begin{document}

...

\end{document}

The above example places the graphics such that their lower left corner is 2.2 inches
to the left and 6 inches below the center of the header. The graphic position can be
adjusted by changing these two numbers.

Since the header is typeset before the text, this example causes the text to appear
on top of the graphics. Since the footer is typeset after the text, putting the graphics
in the footer causes the graphics to appear on top of the text.

If the contents of file.eps contain vector (not bitmapped) graphics, a much
smaller final PostScript file can be obtained by using the procedure described in
Section 16.1 on Page 50.

16.3.1 eso-pic Package

Another method for adding LATEX object on every page is the eso-pic package which
defines a zero-length picture environment with basepoint at the lower left corner of
the page. See the eso-pic package documentation [15] for details.

54

Part IV

The Figure Environment

17 The Figure Environment

When using a word processor, figures appear exactly where the user places them24.
Since these figures cannot be split, they often lead to poor page breaks that leave
large chunks of blank space at the bottom of pages. To achieve a professional-
looking document, the author must manually rearrange the figures to avoid these
poor page breaks. This figure-shuffling becomes quite tedious, especially since it
must be repeated whenever the document is modified.

LATEX provides floating figures which automatically move to esthetically-pleasing
locations, producing professional-looking documents without all of the figure-moving
drudgery. However, these floating figures often bother new users who are accustomed
to manual figure placement. Taking advantage of LATEX’s floating figures requires
the following

Don’t compose text which is dependent on figure placement.

Using the phrase “This figure...” or “The following figure...” requires the figure
to be in a certain location. Using the phrase “Figure 14...” allows the figure
to be positioned anywhere.

Relax.

Some users get quite worried when a figure isn’t placed exactly where they want
it. Figure placement is LATEX’s job; users generally should not worry about it.

The following pages describe how the LATEX determines float locations which obeySummary
of Advice typesetting rules for a professional-looking document. For convenience, the solutions

to the most-common float-placement problems are listed below.

1. Don’t handcuff LATEX. The more float placement options are given to LATEX,
the better it handles float placement. In particular, the [htbp] and [tbp]
options work well. See Section 17.2 on Page 58.

2. Many people find the default float parameters are too restrictive. The following
commands

\setcounter{topnumber}{4}
\setcounter{bottomnumber}{4}
\setcounter{totalnumber}{10}
\renewcommand{\textfraction}{0.15}
\renewcommand{\topfraction}{0.85}
\renewcommand{\bottomfraction}{0.70}
\renewcommand{\floatpagefraction}{0.66}

set the float parameters to more-permissive values. See Section 18 on Page 61.

3. LATEX allows figures to float to the top of the current page, thus appearing
before the reference in the text. Users who do not like this behavior should
use the flafter package [18]. Include \usepackage{flafter} at the beginning
of the document; no other commands are necessary.

24Although many word processors do allow figures to move around text (or vice-versa), the vast
majority of the users do not use such capability because of either poor implementation by the
software author and/or ignorance/indifference by the document author.

55

4. To guarantee that a figure does not float past a certain point, use the placeins
package and issue a \FloatBarrier command. See Section 17.3 on Page 59.

Warning, overuse of \FloatBarrier indicates that either the float-placement
is being micro-managed or the float parameters are set incorrectly, neither of
which are good.

17.1 Creating Floating Figures

Floating figures are created by putting commands in a figure environment. The
contents of the figure environment always remain in one chunk, floating to produce
good page breaks. The floating figures can be automatically numbered by using the
\caption command. For example, the following commands put the graphic from
graph.eps inside a floating figure

\begin{figure}
\centering
\includegraphics[totalheight=2in]{graph.eps}
\caption{This is an inserted EPS graphic}
\label{fig:graph}

\end{figure}

The graph in Figure~\ref{fig:graph} on Page~\pageref{fig:graph}...

Notes about figures

• The optional \label command, can be used with the \ref, and \pageref com-
mands to reference the caption. See Section 17.1.1 for additional information
on references. The \label command must be placed immediately after the
\caption command. Putting the \label before the \caption causes the \ref
command to reference the last reference-able object (which often is the section
or previous figure).

• If the figure environment contains no \caption commands, it produces an
unnumbered floating figure.

• If the figure environment contains multiple \caption commands, it produces
multiple figures which float together. This is useful in constructing side-by-
side graphics (see Section 28 on Page 104) or complex arrangements such as in
Section 31 on Page 110.

• By default, the caption text is used as the caption and also in the list of figures.
The caption has an optional argument which specifies the list-of-figure entry.
For example,

\caption[List Text]{Caption Text}

causes “Caption Text” to appear in the caption, but “List Text” to appear in
the list of figures. This is useful when long, descriptive captions are used.

• The figure environment can only be used in outer paragraph mode, preventing
it from being used inside any box (such as parbox or minipage).

• Figure environments inside of paragraphs
....text text text text text text
\begin{figure}

....
\end{figure}
text text text text text text...

are not processed until the end of the paragraph.

56

17.1.1 Defining a Reference Command

Instead of typing

Figure~\ref{fig:graph} on Page~\pageref{fig:graph}

it is more convenient to define the following command in the document preamble

\newcommand\Figpage[1]{Figure~\ref*{#1} on Page~\pageref*{#1}}

which allows the reference code to shortened to

\Figpage{fig:graph}

Conditional References
The above \Figpage definition always prints both the Figure’s number and page

number. In cases where the figure appears on the same page as the reference, it may
be desirable to omit the page number. This can achieved by the following code

\newcommand\FigDiff[1]{Figure~\ref*{#1} on Page~\pageref*{#1}}
\newcommand\FigSame[1]{Figure~\ref*{#1}}
\newcommand\Figref[1]{\ifthenelse{\value{page}=\pageref{#1}}

{\FigSame{#1}}{\FigDiff{#1}}}

If the reference and figure are on the same page, the \Figref command calls the
\FigSame command which displays “Figure 17”. If the reference and figure are on
different pages, the \Figref command calls the \FigDiff command which displays
“Figure 17 on Page 25”.

The varioref package [34] provides addition commands like this for referencing
Figures, Tables, Section, etc.

17.1.2 hyperref Package

The hyperref package allows users to construct hyperlinks within LATEX documents,
most commonly in conjunction with pdflatex.

One feature of hyperref is that it redefines the \ref and \cite commands to be
typeset as hyperlinks to the reference. The \ref* and \cite* commands are defined
for references and cites without hyperlinks.

Because the hyperref package redefines many LATEX commands, users should order
their \usepackage to make hyperref be the last package loaded.

For more information, see the Hypertext Manual [21].

Hypertext References
When using the hyperref package, the \ref command typesets the figure number
with a hyperlink to the figure. Since the figure number is relatively small, it may
be difficult for readers to click on the actual figure number. To make clicking the
hyperlink easier, the following code

\newcommand\Figlink[1]{\hyperref[#1]{Figure~\ref*{#1}} on Page~\pageref*{#1}}

defines a \Figlink command which turns the entire “Figure 17” reference into a
single hyperlink.

57

17.2 Figure Placement

The figure environment has an optional argument which allows users to specify
possible figure locations. The optional argument can contain any combination of the
following letters

h Here: Place the figure in the text where the figure command is located. This
option cannot be executed if there is not enough room remaining on the page.

t Top: Place the figure at the top of a page.

b Bottom: Place the figure at the bottom of a page25.

p Float Page: Place the figure on a containing only floats.

Notes on figure placement:

• If no optional arguments are listed, the placement options default to [tbp].
The default arguments can be customized by redefining the internal command
\fps@figure. For example, the following code

\makeatletter
\def\fps@figure{htbp}

\makeatother

causes the placement options to default to [htbp].

• The order in which the placement options are specified does not make any
difference, as the placement options are always attempted in the order h-t-b-p.
Thus [hb] and [bh] are both attempted as h-b.

• The more float placement options are given to LATEX, the better it handles
float placement. In particular, the [htbp], [tbp], [htp], [tp] options usually
work well.

• Single-location options [t], [b], [p] [h] are problematic26. If the figure
doesn’t fit in the specified location, the figure becomes stuck, blocking the
subsequent figures. A “Too Many Unprocessed Floats” error occurs if this log-
jam of figures exceeds LATEX’s limit of 18 unprocessed floats (see Section 17.4
on Page 60).

When LATEX “tries” to place a figure, it obeys the following rulesAlso see
Reference

[1, pg 198].
1. A figure can only be placed in the locations specified by its placement options.

2. The figure cannot cause the page to be overfull.

3. The float must be placed on the page where it occurs in the text, or on a later
page27. Thus figures can “float later” but cannot “float earlier”

4. Figures must appear in order. Thus a figure cannot be placed until all previous
figures are placed. Two ramifications of this rule are

• A figure can never be placed “here” if there are any unprocessed figures.

25When a figure is placed at the bottom of a page, it is placed below any footnotes on the page.
Although this may be objectionable, there currently is no way to change this arrangement.

26In fact, the [h] option should never be used. It is so bad that recent versions of LATEX auto-
matically change it to [ht].

27Since a float can appear at the top of the page where it occurs in the text, it can appear before
its occurrence in the text. If this is objectionable, the flafter package can be used to prevent this.
No command is necessary to activate flafter; just include it in a \usepackage command.

58

• One “impossible-to-place” figure prevents any subsequent figure from be-
ing placed until the end of the document or until LATEX’s float limit is
reached. See Section 17.4 on Page 60.

Similarly, a table cannot be placed until all previous tables are placed. How-
ever, tables can leapfrog figures and vice-versa.

5. The aesthetic rules in Section 18 must be followed. For example, the number
of floats on a page cannot exceed totalnumber. Specifying an exclamation
point in the placement options (e.g., \begin{figure}[!ht]) makes LATEX “try
really hard” by ignoring the aesthetic rules which apply to text pages (! does
not affect the aesthetic rules which apply to float pages).

17.3 Clearing Unprocessed Floats

A big advantage for using floats is that LATEX is not required to place them imme-
diately in the text. Instead, LATEX can hold the float until it can place it at a better
location. When a float has been read by LATEX but not yet placed on the page, it is
called a “unprocessed float.” While the float-placing algorithm works well, sometimes
it is necessary to force LATEX to process any unprocessed floats.

Below are three methods for clearing processed floats. These commands should
be used sparingly; their overuse is either a sign you are micro-managing your float
placement or your float placement parameters have bad values (see Section 18 on
Page 61).

clearpage

The most basic method for clearing the unprocessed figures backlog is to is-
sue a \clearpage command, which places all unprocessed floats and starts a
new page. While this is effective, it is undesirable as it generally produces a
partially-filled page.

FloatBarrier

For most situations, the best method for forcing float placement is the \FloatBarrier
command provided by the placeins package. There are three ways of using
placeins

1. The \FloatBarrier command causes all unprocessed floats to be processed
immediately. Unlike \clearpage, it does not start a new page.

2. Since it is often desirable to keep floats in the section in which they were
issued, the section option

\usepackage[section]{placeins}

redefines the \section command, inserting a \FloatBarrier command
before each section.
Note that this option is very strict. For example, if a new section start
in the middle of a page, the section option does not allow a float from
the old section to appear at the bottom of the page, since that is after the
start of the new section.

3. The below option
\usepackage[below]{placeins}

is a less-restrictive version of the section option. It allows floats to be
placed after the beginning of a new section, provided that some of the old
section appears on the page.

59

The placeins package does not change the floats’ float-placement options. For
example, since \FloatBarrier can only place a [t] float at the top of a page,
the \FloatBarrier command processes a [t] float by filling the remaining
portion of the current page with whitespace and then placing the [t] float at
the top of the next page. Similarly, since \FloatBarrier cannot place a [b]
float “here”, text is prevented from appearing below it.

Both of these examples once again demonstrate that LATEX float placement is
most effective when multiple float-placement options (such as [tbp] or [htbp])
are specified.

afterpage/clearpage

The afterpage package provides the \afterpage command which executes a
command at the next naturally-occurring page break. Therefore, using

\afterpage{\clearpage}

causes all unprocessed floats to be cleared at the next page break.

Using \afterpage{\clearpage} command may not always solve float limit
problems (see Section 17.4 on Page 60). Since it puts does not execute the
\clearpage until the end of the page, additional unprocessed floats may accu-
mulate before the page break.

\afterpage{\clearpage} is especially useful when producing small floatpage
figures. The \floatpagefraction (see Section 18.2 on Page 61) prevents
floatpage floats which are “too small” from being placed on a float page.
Furthermore, since the ! float-placement modifier does not apply to float
pages, [!p] does not override the \floatpagefraction restriction. Using
\afterpage{\clearpage} is an easy method to override the \floatpagefraction
restriction without causing a partially-filled text page.

17.4 Too Many Unprocessed Floats

If a float cannot be processed immediately, it is placed on the unprocessed float queue
until it can be processed. Since, LATEX only has room for 18 floats on this queue,
having more than 18 unprocessed floats produces a “Too Many Unprocessed Floats”
error. There are four possible causes for this error:

1. The most common problem is that the float placement options are incompatible
with the float placement parameters. For example, a [t] figure whose height
is larger than \topfraction becomes stuck. Since the other single-position
options have similar problems, specify as many float placement options as pos-
sible.

2. Incompatible float fraction values may make it impossible to place certain
floats. To avoid this, make sure any float fraction values satisfy the Section 18.2
guidelines.

3. In rare situations, users with many floats and many \marginpar notes (which
use the same queue), may need a larger unprocessed float queue. Using the
morefloats package increases the size of the unprocessed float queue from 18 to
36.

4. LATEX’s float placement queue is exceeded if more than 18 figures are specified
without any text between them. Possible solutions include

60

(a) Scatter the figures in the text. This allows enough text to accumulate to
force natural pagebreaks, making it easier for LATEX to process the floats.

(b) Put \clearpage between some figures. This is inconvenient because it
requires some iterations to avoid partially-full pages. Note that

\afterpage{\clearpage}
(which causes a \clearpage at the next naturally-occurring pagebreak)
does not help in this situation because the float queue limit is reached
before enough text is accumulated in order to trigger a pagebreak.

(c) Since there is no text, the figures don’t need to float. Therefore, the best
solution is probably to use the Section 21 procedure for constructing non-
floating figures, separated by \vspace or \vfill commands to provide
vertical spacing.

18 Customizing Float Placement

The following style parameters are used by LATEX to prevent awkward-looking pages
which contain too many floats or badly-placed floats. If these style parameters are
changed anywhere in the document, they do not apply until the next page. How-
ever, if the parameters are changed in the document’s preamble, they apply at the
beginning of the document.

18.1 Float Placement Counters

The three counters in Table 6 prevent LATEX from placing too many floats on a text
page. These counters do not affect float pages. Specifying a ! in the float placement
options causes LATEX to ignore theses parameters. The values of these counters are
set with the \setcounter command. For example,

\setcounter{totalnumber}{2}

prevents more than two floats from being placed on any text page. Many peopler
feel the default float placement counters are too restrictive and prefer larger values
such as

\setcounter{topnumber}{4}
\setcounter{bottomnumber}{4}
\setcounter{totalnumber}{10}

Table 6: Float Placement Counters

topnumber The maximum number of floats allowed at the top of a text page
(the default is 2).

bottomnumber The maximum number of floats allowed at the bottom of a text
page (the default is 1).

totalnumber The maximum number of floats allowed on any one text page
(the default is 3).

18.2 Figure Fractions

The commands in Table 7 control what fraction of a page can be covered by floats
(where “fraction” refers to the height of the floats divided by \textheight). The
first three commands pertain only to text pages, while the last command pertains
only to float pages. Specifying a ! in the float placement options causes LATEX
to ignore the first three parameters, but \floatpagefraction is always used. The
value of these fractions are set by \renewcommand. For example,

61

\renewcommand{\textfraction}{0.3}

lets floats cover no more than 70% of a text page.

Table 7: Figure Placement Fractions

\textfraction The minimum fraction of a text page which must be oc-
cupied by text. The default is 0.2, which prevents floats
from covering more than 80% of a text page.

\topfraction The maximum fraction of a text page which can be occu-
pied by floats at the top of the page. The default is 0.7,
which prevents any float whose height is greater than 70%
of \textheight from being placed at the top of a page.
Similarly, if the combined height of multiple t floats is
greater than 70% of \textheight, they all will not be
placed at the top of a page, even if they number less than
topnumber.

\bottomfraction The maximum fraction of a text page which can be occu-
pied by floats at the bottom of the page. The default is
0.3, which prevents any float whose height is greater than
30% of \textheight from being placed at the bottom of
a text page.

\floatpagefraction The minimum fraction of a float page that must be occu-
pied by floats. Thus the fraction of blank space on a float
page cannot be more than 1-\floatpagefraction. The
default is 0.5.

The default placement fraction values prevent many and/or large floats fromPlacement
Fraction

Guidelines
dominating text pages and also prevent small figures from being placed in a sea of
whitespace on a float page. While the default values generally work well, sometimes
they may be a bit too restrictive, resulting in figures floating too far from where they
are issued. In these cases it may be desirable to set the placement fractions to more
permissive values such as

\renewcommand{\textfraction}{0.15}
\renewcommand{\topfraction}{0.85}
\renewcommand{\bottomfraction}{0.70}
\renewcommand{\floatpagefraction}{0.66}

One must take care when adjusting placement fraction values, as unreasonable values
can lead to poor formatting and/or “stuck” floats. To avoid such problems, the
following guidelines should be used:

\textfraction

Setting \textfraction smaller than 0.15 is discouraged as it produces hard-
to-read pages. If a figure’s height is more than 85% of \textheight, it almost
certainly looks better by itself on a float page than squeezed on a text page
with a couple of lines of text below it.

Furthermore, never set \textfraction to zero as permits a text page to have
no text, which confuses LATEX and leads to badly-formatted pages.

\topfraction

Never set \topfraction larger than 1 - \textfraction, as that causes con-
tradictions in the float-placing algorithm.

62

\bottomfraction

Since “good typesetting style” discourages large bottom figures, \bottomfraction
is generally smaller than \topfraction. Never set \bottomfraction larger
than 1 - \textfraction, as that causes contradictions in the float-placing al-
gorithm.

\floatpagefraction

If \floatpagefraction is set very small, every float page contains exactly one
float, resulting in excessive whitespace around small p figures.

If \floatpagefraction is larger than \topfraction , [tp] figures may be-
come “stuck.” For example, suppose the height of a [tp] figure is larger than
\topfraction but smaller than \floatpagefraction, it becomes “stuck” be-
cause it is too large to be placed on a text page and too small to be placed
on a float page. To prevent such stuck figures, \floatpagefraction and
\topfraction should satisfy the following inequality:

\floatpagefraction ≤ \topfraction− 0.05

The 0.05 term is due to the difference in the accounting of vertical space for
text pages and float pages28. Likewise, if [bp] or [hbp] figures are used,
\floatpagefraction and \bottomfraction should also satisfy

\floatpagefraction ≤ \bottomfraction− 0.05

Note that the default values do not satisfy the second inequality, which may
occasionally cause problems with [bp] and [hbp] figures.

18.3 Suppressing Floats

The \suppressfloats prevents additional floats from appearing at the top or the
bottom of the current page. They do not affect figures with “here” placement or
those with ! in the placement options.

Putting \suppressfloats[t] immediately before a figure, prevents that float
from appearing above the place where it appears in the text. The flafter package
redefines LATEX’s float algorithm to prevent this for the entire document.

Table 8: Suppressfloats Options

\suppressfloats[t] Prevents additional figures from appearing at the top of
the current page.

\suppressfloats[b] Prevents additional figures from appearing at the bottom
of the current page.

\suppressfloats Prevents additional figures from appearing at either the
bottom or the top of the current page.

28Specifically, \textfloatsep and the other text-page float spacing is counted when comparing a
figure with \topfraction, but the float page spacings are not counted in testing if a figure exceeds
\floatpagefraction. As a result, \textfloatsep divided by \textheight (which is ≈ 0.05) should
be subtracted from \topfraction. See Section 19.1 on Page 64 for information on figure spacing.

63

19 Customizing the figure Environment

19.1 Figure Spacing

The lengths in Table 9 control how much vertical spacing is added between two
figures or between a figure and text. Unlike most other LATEX lengths, these three
are rubber lengths, which provides spacing which can shrink or expand to provide
better page formatting. These lengths are set with the \setlength command. For
example,

\setlength{\floatsep}{10pt plus 3pt minus 2pt}

sets the “nominal” value of \floatsep to be 10 points. To improve page formatting,
the float separation can be as small as 8 points or as large as 13 points.

Since LATEX places \intextsep above and below each “here” float, two consecu-
tive “here” floats are separated by two \intextsep spaces. This extra spacing can be
avoiding by combining the two floats into a single float, although this may result in
a less-attractive layout since it prevents the float-placement algorithm from placing
the two floats separately.

The lengths listed in Table 9 do not affect the spacing of floats on float pages.
The float-page spacing is controlled by the lengths listed in Table 10. The float-
page spacings often use the fil unit to provide infinite stretchability, similar to the
vertical space produced by \vfill. When multiple fil spaces appear in the same
space, they expand proportionally to fill the space. For example, the default float-
page parameters cause the space between float-page floats to be double the space
above the top float or below the bottom float.

The @ in the names of the Table 10 lengths mean they are internal commands29.
As a result, any \setlength command which modifies the lengths must be sur-
rounded by \makeatletter and \makeatother. For example,

29Any user code which accesses or redefines internal commands must be surrounded by
\makeatletter and \makeatother.

Table 9: Figure Spacing for Text Pages

\floatsep For floats at the top or bottom of a page, this is the vertical
spacing between floats. The default is 12pt plus 2pt minus
2pt

\textfloatsep For floats at the top or bottom of a page, this is the vertical
spacing between the float and the text. The default is 20pt
plus 2pt minus 4pt

\intextsep For floats placed in the middle of a text page (i.e., with the h
placement option), this is the vertical spacing above and below
the float. The default is 12pt plus 2pt minus 2pt

Table 10: Figure Spacing for Floatpages

\@fptop This is the vertical spacing above the top floatpage float. The default
is 0pt plus 1.0fil

\@fpsep This is the vertical spacing between floatpage floats. The default is 8pt
plus 2.0fil

\@fpbot This is the vertical spacing below the bottom floatpage float. The
default is 0pt plus 1.0fil

64

\makeatletter
\addtolength{\@fpsep}{4pt}

\makeatother

increases the space between floatpage floats by 4 points.

19.2 Horizontal Lines Above/Below Figure

Horizontal lines can be automatically drawn between the text and figures which
appear at the top/bottom of the page by redefining the

\topfigurerule
\bottomfigurerule

commands. Although \topfigrule and \bottomfigrule are already defined as
LATEX commands, the strange way in which they are defined requires them to be
redefined with \newcommand instead of \renewcommand.

To avoid disrupting the page formatting, these commands must have a zero
height. Thus drawing 0.4 point line must be accompanied by a 0.4 point vertical
backspace. For example,

\newcommand{\topfigrule}{\hrule\vspace{-0.4pt}}

Since \topfigrule is executed before the \textfloatsep spacing, the above com-
mand provides no spacing between the figure and the line. The following commands
provide 5 points of space between the figure and the line.

\newcommand{\topfigrule}{%
\vspace*{5pt}\hrule\vspace{-5.4pt}}

\newcommand{\botfigrule}{%
\vspace*{-5.4pt}\hrule\vspace{5pt}}

The \topfigrule definition first moves 5 points down (into the \textfloatsep
spacing) to provide space between the figure and the line. It then draws a 0.4
point horizontal line and moves back up 5.4 points to compensate for the previous
downward motion. Likewise, the \botfigrule command draws a 0.4 point line with
5 points of spacing between the figure and the rule.

Since these commands place 5 points of space between the line and figure, the
spacing between the line and the text is \textfloatsep - 5pt (see Section 19.1 on
Page 64).

The line thickness can be changed from the 0.4 point default by using the \hrule
command’s height option

\newcommand{\topfigrule}{%
\vspace*{5pt}{\hrule height0.8pt}\vspace{-5.8pt}}

\newcommand{\botfigrule}{%
\vspace*{-5.8pt}{\hrule height0.8pt}\vspace{5pt}}

Notes on figure rules:

• The \topfigrule and \bottomfigrule affect neither floatpage figures nor
“here” figures (i.e., using the h option). If a “here” figure happens to be
placed at the top or the bottom of the page, no line is drawn.

To implement its commands, LATEX uses many internal commands which users generally do not
need to access. To prevent these internal command names from accidentally conflicting with user-
defined names, LATEX includes a @ in these internal command names. Since LATEX command names
can contain only letters, defining a command whose name contains @ are normally not possible.
However, when it is necessary for users to change the internal commands, the \makeatletter com-
mand causes LATEX to treat @ as a letter, thus allowing users to use @ in command names. The
\makeatother command causes LATEX to revert to the normal behavior of treating @ as a non-letter.

65

Table 11: Figure Rule Commands

\topfigrule This command is executed after the last float at the top of a
page, but before the \textfloatsep spacing (see Section 19.1
on Page 64).

\bottomfigrule This command is executed before the first float at the bottom
of a page, but after the \textfloatsep spacing.

• The horizontal rules are as wide as the text, even if wider figures (see Section 23
on Page 90) are used.

• The TEX \hrule command was used instead of LATEX \rule command because
the \rule would generate additional space when \parskip is not zero.

19.3 Caption Vertical Spacing

LATEX assumes that captions are placed below the graphic, placing more vertical
spacing above the caption than below it. As a result, the commands

\begin{figure}

\centering

\caption{Caption Above Graphic}

\includegraphics[width=1in]{graphic}

\end{figure}

produce Figure 13, whose caption is placed quite close to the graphic.

Figure 13: Caption Above Graphic

Graphic

The caption spacing is controlled by the lengths \abovecaptionskip (which is
10pt by default) and \belowcaptionskip (which is zero by default). The standard
LATEX commands \setlength and \addtolength are used to modify these lengths.
For example, the commands

\begin{figure}

\setlength{\abovecaptionskip}{0pt}

\setlength{\belowcaptionskip}{10pt}

\centering

\caption{Caption Above Graphic}

\includegraphics[width=1in]{graphic}

\end{figure}

produce Figure 14, which has has no extra space above the caption and 10 points of
space between the caption and the graphic.

Figure 14: Caption Above Graphic

Graphic

If a document has all its captions at the top of its floats, the commands
\setlength{\abovecaptionskip}{0pt}
\setlength{\belowcaptionskip}{10pt}

can be issued in the document’s preamble to affect the caption spacing for all the
document’s captions (figures and tables). If a document contains captions at the top
of some floats and at the bottom of other floats, it may be desirable to define the
following command

66

\newcommand{\topcaption}{%
\setlength{\abovecaptionskip}{0pt}%
\setlength{\belowcaptionskip}{10pt}%
\caption}

Then \topcaption{caption text} produces a caption which is properly spaced for
the top of a float.

Two other methods for producing properly-spaced top captions are

• The caption package’s position=top option in Table 16 on Page 74 swaps the
meaning of \abovecaptionskip and \belowcaptionskip

• The topcapt package [33], defines a \topcaption command which produces a
caption with the \abovecaptionskip and \belowcaptionskip lengths inter-
changed.

19.4 Caption Label

By default, LATEX inserts a caption label such as “Figure 13: ” at the beginning of the
the caption. The “Figure” portion can be changed by redefining the \figurename
command. For example, the commands

\begin{figure}

\centering

\includegraphics[width=1in]{graphic}

\renewcommand{\figurename}{Fig.}

\caption{This is the Caption}

\end{figure}

produce Figure 15. The caption font, the “:” delimiter, and other caption charac-
teristics can be customized with the caption package (see Section 20 on Page 69).

Graphic

Fig. 15: This is the Caption

19.5 Caption Numbering

The default method for numbering the figures is Arabic (1, 2, 3, 4,. . .). This can be
changed by redefining the \thefigure command.

The number of the current figure is stored in the figure counter. The \thefigure
command specifies which of the counter numbering commands (\arabic, \roman,
\Roman, \alph, \Alph) is used to print the counter value. For example,

\renewcommand{\thefigure}{\Roman{figure}}

causes the figures to be numbered with uppercase Roman numerals (I, II, III, IV,. . .).

Notes on figure numbering:

• There must be 26 or fewer figures to use the \alph or \Alph commands.

• Since Roman numbering produces longer figure numbers (e.g., XVIII vs. 18),
using \Roman or \roman may cause spacing problems in the Table of Figures.

67

19.6 Moving Figures to End of Document

Some journals require that tables and figures be separated from the text. The endfloat
package moves all the figures and table to the end of the document. Simply including
the package

\usepackage{endfloat}

activates the package. The package supports many options which can be included in
the \usepackage command, including

• Notes such as “[Figure 4 about here.]” are placed in approximately where the
floats would have appeared in the text. Such notes can be turned off with the
nomarkers package option

\usepackage[nomarkers]{endfloat}

The text of these notes can be changed by redefining the \figureplace and
\tableplace commands. For example,

\renewcommand{\figureplace}{%
\begin{center}%
[\figurename~\thepostfig\ would appear here.]%
\end{center}}

changes the \figureplace text.

• A list of figures is included before the figures and a list of tables is included
before the tables. The nofiglist and notablist package options suppress
these lists.

• The fighead and tabhead package options create section headers for the figures
and tables, respectively.

• The figures appear before the tables. The tablesfirst package option reverses
this order.

• A \clearpage command is executed after each figure and table, causing each
float to appear on a page by itself. This can be changed by modifying the
\efloatseparator command. For example,

\renewcommand{\efloatseparator}{\mbox{}}

places an empty \mbox after each float.

19.7 Adjusting Caption Linespacing

To doublespace a document, include either
\linespread{1.6}

or equivalently
\renewcommand{\baselinestretch}{1.6}

in the preamble30. In addition to doublespaced text, this also produces doublespaced
captions and footnotes. To produce doublespaced text and singlespaced captions and
footnotes, use the setspace package31.

\usepackage{setspace}
\linestretch{1.5}

A 1.0 linestretch causes single-spaced text, a 1.25 linestretch causes space-and-a-half
spaced text, and a 1.6 linestretch causes doublespaced text.

30Although it is generally considered poor style, these commands can also be used within a docu-
ment to change the interline spacing. When these commands are used within a document, a fontsize
command such as \normalsize must issued after the line-spacing command to put the new spacing
into effect.

31Although the doublespace package also sets line spacing, it has not been properly updated to
LATEX2ε, causing it to interact with many packages. As a result, setspace should be used instead.

68

20 Customizing Captions with caption package

Section 19.4 on Page 67 describes how to customize the caption label while Sec-
tion 19.3 on Page 66 describes how to customize the caption vertical spacing. The
caption package32 provides commands for customizing other caption characteristics.
This section provides an overview of the caption package. Further details are found
in the caption package documentation [12].

The caption package can be used with many types of floats as it officially supports
the float, listings, longtable, rotating, sidecap, supertabular, and subfig packages. It also
works with the floatfig, subfloat, and wrapfig packages.

Although it is not described in this document, the ccaption (note the double-c) pack-ccaption
package age also provides commands for customizing captions. It is described in [13].

20.1 Caption Package Overview

There are two aspects to the caption package

• The new variants of the \caption command which produce the captions are
described in Section 20.2 and listed in Table 12.

• Section 20.3 on Page 70 describes the two methods for specifying caption-
customizing options. There are four types of options:

Font Options customize the caption font33. These options are listed in Ta-
ble 14 and Table 15 on Page 73 with examples provided in Section 20.4.1
on Page 76.

Caption Spacing Options customize the caption vertical spacing. These
options are listed in Table 16 on Page 74 with examples provided in Sec-
tion 20.4.2 on Page 77.

Caption Label Options customize the caption label and separator. These
options are listed in Table 17 on Page 74 with examples provided in Sec-
tion 20.4.3 on Page 79.

Caption Formatting Options customize the caption formatting. These op-
tions are listed in Table 18 on Page 75 with examples provided in Sec-
tion 20.4.4 on Page 80.

Note that the tables listing the caption-package options (Tables 13 - 18) are
grouped together on pages 73-75 to facilitate convenient reference. The exam-
ples are grouped together in Section 20.4 on Page 76.

• Users can define a collection of caption options, called caption styles. The entire
collection of options can be specified with the style= option. See Section 20.5.1
on Page 84.

• Instead of just using the built-in option values, users can define their own option
values as described in Section 20.5.2.

32Version 3 of the caption package replaces previous caption versions as well as the caption2 package.

33Although caption package provides commands to customize a caption’s font, not every combi-
nation of font attributes necessarily exists in the font being used. For example, suppose the user
specifies a font with roman family, small caps shape, and bold series. If that combination is not
supported by the current font, then LATEX may instead substitute a font with roman family, upright
shape, and bold series.

69

20.2 Caption Commands

Section 17.1 on Page 56 describes the \caption command and some customization is
described in and Section 19. The caption package provides many more customization
options.

The caption package slightly changes this \caption command and also introduces
new variants as described in Table 12. The highlights include:

• The caption package changes the \caption command such that if the optional
argument is specified but empty

\caption[]{caption text}

then no entry is made in the list of figures/tables for that caption.

• The new \caption* command displays the caption without a caption label and
without entry in the list of tables.

• The new \captionof command allows a particular type of caption to be used
anywhere: figure environment, table environment, or elsewhere in a document.
For example

\begin{figure}
....
\captionof{table}[List of Tables Text]{Table Caption}

\end{figure}

produces a Table caption inside a figure environment. This is useful for

1. Placing a table and figure side-by-side as described in Section 30 on
Page 109).

2. Constructing marginal figures (see Section 22 on Page 89).
3. Constructing non-floating figures (see Section 21 on Page 87).

Note that the \captionof should always be used inside some type of environ-
ment (such as minipage) to avoid page breaks occurring between the caption
and the float contents.

20.3 Customizing Captions with Caption Command

As mentioned earlier in Section 20.1 on Page 69, the caption package allows the user
to customize the caption font, spacing, label, and format. The options (listed in
Tables 13 - 18) can be specified in either of two ways:

usepackage options
\usepackage[options]{caption} where [options] are any combination of
options specified in Table 13. For example

\usepackage[margin=10pt,font=small,labelfont=bf]{caption}

causes all caption margins to be indented by an additional 10pt on both left
and right sides, with the entire caption (label and text) having a small font
size and the label having a bold font series.

captionsetup command
The command \captionsetup{options} causes specified options to be in ef-
fect for the remaining environment. (A \captionsetup command in a docu-
ment’s preamble effects the entire document.) For example

\captionsetup{margin=10pt,font=small,labelfont=bf}

70

T
ab

le
12

:
ca

pt
io

n
pa

ck
ag

e
ca

pt
io

n
C

om
m

an
ds

C
om

m
an

d
D

es
cr

ip
ti

on
\
c
a
p
t
i
o
n
{
〈c

ap
ti
on

te
xt
〉}

U
se

s
〈c

ap
ti
on

te
xt
〉

fo
r

bo
th

fig
ur

e/
ta

bl
e

ca
pt

io
n

an
d

fo
r

L
is

t
of

F
ig

ur
es

/T
ab

le
s.

(S
am

e
be

ha
vi

or
as

w
it
ho

ut
ca

p
ti
on

pa
ck

ag
e)

.
\
c
a
p
t
i
o
n
[
〈li

st
en

tr
y〉
]
{
〈c

ap
ti
on

te
xt
〉}

U
se

s
〈c

ap
ti
on

te
xt
〉

fo
r

fig
ur

e/
ta

bl
e

ca
pt

io
n

an
d
〈li

st
te

xt
〉

fo
r

en
tr

y
in

L
is

t
of

F
ig

ur
es

/T
ab

le
s.

(S
am

e
be

ha
vi

or
as

w
it
ho

ut
ca

p
ti
on

pa
ck

ag
e)

.
\
c
a
p
t
i
o
n
[
]
{
〈c

ap
ti
on

te
xt
〉}

U
se

s
〈c

ap
ti
on

te
xt
〉

fo
r

fig
ur

e/
ta

bl
e

ca
pt

io
n

an
d

cr
ea

te
s

no
en

tr
y

in
L
is

t
of

F
ig

-
ur

es
/T

ab
le

s.
\
c
a
p
t
i
o
n
*
{
〈c

ap
ti
on

te
xt
〉}

U
se

s
〈c

ap
ti
on

te
xt
〉

fo
r

fig
ur

e/
ta

bl
e

ca
pt

io
n

bu
t

do
es

no
t

in
cl

ud
e

ca
pt

io
n

la
be

l
or

se
pa

ra
to

r
(s

ee
F
ig

ur
e

16
).

N
o

en
tr

y
is

ge
ne

ra
te

d
fo

r
th

e
L
is

t
of

F
ig

ur
es

/T
ab

le
s.

\
c
a
p
t
i
o
n
o
f
{
〈fl

oa
t
ty

pe
〉}
[
〈li

st
en

tr
y〉
]
{
〈c

ap
ti
on

te
xt
〉}

If
〈fl

oa
t
ty

pe
〉

is
f
i
g
u
r
e

th
en

F
ig

ur
e

ca
pt

io
n

an
d

en
tr

y
in

L
is

t
of

F
ig

ur
es

is
ge

ne
r-

at
ed

,e
ve

n
if

th
e
\
c
a
p
t
i
o
n
o
f

co
m

m
an

d
is

lo
ca

te
d

ou
ts

id
e

of
a

fig
ur

e
en

vi
ro

nm
en

t.
L
ik

ew
is

e,
if
〈fl

oa
t
ty

pe
〉

is
t
a
b
l
e

th
en

F
ig

ur
e

ca
pt

io
n

an
d

en
tr

y
in

L
is

t
of

T
ab

le
is

ge
ne

ra
te

d,
ev

en
if

th
e
\
c
a
p
t
i
o
n
o
f

co
m

m
an

d
is

lo
ca

te
d

ou
ts

id
e

of
a

ta
bl

e
en

vi
ro

n-
m

en
t.

\
c
a
p
t
i
o
n
o
f
*
{
〈fl

oa
t
ty

pe
〉}
{
〈c

ap
ti
on

te
xt
〉}

Si
m

ila
r

to
\
c
a
p
t
i
o
n
o
f

co
m

m
an

d,
th

e
〈fl

oa
t
ty

pe
〉

sp
ec

ie
s

w
he

th
er

a
fig

ur
e

or
ta

bl
e

ca
pt

io
n

is
ge

ne
ra

te
d.

Si
m

ila
r

to
\
c
a
p
t
i
o
n
*

co
m

m
an

d,
\
c
a
p
t
i
o
n
o
f
*

co
m

m
an

d
us

es
〈c

ap
ti
on

te
xt
〉

fo
r

fig
ur

e/
ta

bl
e

ca
pt

io
n

bu
t

do
es

no
t

in
cl

ud
e

ca
pt

io
n

la
be

l
or

se
pa

ra
to

r
(s

ee
F
ig

ur
e

16
).

N
o

en
tr

y
is

ge
ne

ra
te

d
fo

r
th

e
L
is

t
of

F
ig

ur
es

/T
ab

le
s.

\
C
o
n
t
i
n
u
e
d
F
l
o
a
t

A
llo

w
s
m

ul
ti

pl
e
\
c
a
p
t
i
o
n

co
m

m
an

d
to

sh
ar

e
sa

m
e

fig
ur

e
nu

m
be

r.
Se

e
Se

ct
io

n
32

.3
on

P
ag

e
11

4
an

d
Se

ct
io

n
33

on
P
ag

e
11

6.

71

causes all subsequent caption in the current environment to be indented by an
additional 10pt on both left and right sides, with the entire caption (label and
text) having a small font size and the label having a bold font series.

Table 13 describes the \captionsetup and \clearcaptionsetup commands.

The \captionsetup command has two advantages over specifying options in the
\usepackage command

• The \captionsetup command has optional arguments that cause the options
to apply to just figures or just tables.

• The \captionsetup can change the settings for an individual figure or table.
For example:

\begin{figure}
...
\captionsetup{justification=centering}
\caption{This is the Caption Text}

\end{figure}

causes the captions to be centered for this figure only but does not affect any
other figure.

While the \captionsetup can be used to customize a single caption, this is generally
considered bad style. In general, a user should issue \captionsetup commands the
preamble and avoid using \captionsetup within the document.

72

Table 13: Caption Setup Commands from Caption Package

Command Description
\captionsetup[〈float type〉]{〈options〉} Set caption attributes
Examples \captionsetup{〈options〉} options apply to all captions

\captionsetup[figure]{〈options〉} options apply only to figure captions
\captionsetup[table]{〈options〉} options apply only to table captions

\clearcaptionsetup{〈float type〉} changes caption attributes to defaults
Examples \clearcaptionsetup{figure} resets figure captions to have default options

\clearcaptionsetup{table} resets table captions to have default options

Table 14: Font Options

Option Affected portion
font= Affects entire caption (caption label, separa-

tor, and caption text).
labelfont= Affects only caption label and separator
textfont= Affects only caption text

Table 15: Possible Font Option Values

Action Option Value Description
Use all font defaults default Changes font family, shape, series, and

size to defaults
Specify font family rm roman font family (default)

sf san sarif font family
tt typewriter font family

Specify font shape up upright font shape (default)
it italic font shape
sl slanted font shape
sc small caps font shape

Specify font series md medium font series (default)
bf bold font series

Specify font size scriptsize scriptsize font size

footnotesize footnotesize font size

small small font size
normalsize normal font size (default)
large large font size
Large Large font size

73

Table 16: captionsetup Vertical Space Options

Keyword Value Description
aboveskip= <amount> (default is 10pt) Sets the vertical spacing between the cap-

tion and the figure/table contents. Normally, this space is
placed above the caption, but when position=top then the
aboveskip= spacing is placed below the caption.

belowskip= <amount> (default is 0pt) Sets the vertical spacing in the direction away
from the figure/table contents. Normally, this space is placed
below the caption, but when position=top then belowskip=
spacing is placed above the caption.

position= bottom (default) Places the aboveskip= spacing above the caption
and the belowskip= spacing below the caption.

top This caption reverses the aboveskip= and belowskip= spac-
ings (to accommodate captions at the top of floats).

parskip= <amount> (default is 0pt) The amount of vertical space inserted between
a caption’s paragraphs. (This option has no effect on captions
with only one paragraph).

Table 17: captionsetup Label and Separator Options

Keyword Value Description
labelformat= default (default) Caption label is typeset as specified in the document

class.
simple The caption label is typeset as a name and a number. For

example “Figure 9”.
parens The number is typeset inside parentheses. For example, “(9)”.
empty The caption label is empty (no “Figure”, no number). This is

usually used with labelsep=none to also eliminate the cap-
tion separator.

labelsep= colon (default) The caption separator is a colon and a space
period The caption separator is a period and a space
space The caption separator is a single space
quad The caption separator is a \quad
newline The caption separator is a \newline
none No caption separator. Usually used only with

labelformat=empty

74

Table 18: captionsetup Formatting Options

Keyword Value Description
format= plain (default) Captions are typeset as normal paragraphs.

hang The caption’s 2nd and subsequent lines are indented. It gener-
ally causes the first character of the 2nd line to be horizontally
aligned with the first character of the caption text on the first
line.

justification= justified (default) Caption is typeset as a regular paragraph.
centerlast Last line of caption is horizontally centered.
centerfirst First line of caption is horizontally centered.
centering Each line of caption is horizontally centered.
Centering Same as centering except the TEX word-breaking algorithm

is used.
raggedright Each line is left-justified, leaving a ragged right margin.
RaggedRight Same as raggedright except the TEX word-breaking algo-

rithm is used.
raggedleft Each line is right-justified, leaving a ragged left margin.
RaggedLeft Same as raggedleft except the TEX word-breaking algorithm

is used.
indentation= <amount> (default is 0pt) Amount of additional indentation for the cap-

tion’s 2nd and subsequent lines.
hangindent= <amount> (default is 0pt) Amount of additional indentation for the

2nd and subsequent lines of each paragraph in a caption.
Note hangindent= does not apply to the first line of each
paragraph. (If a caption contains only one paragraph, then
hangindent= and indentation= are equivalent.)

margin= <amount> (default is 0pt) Both left and right margins are brought in by
specified amount.

width= <amount> Sets caption width (left and right margins are brought in equal
amounts). If both margin= and width= values are specified,
the last option specified applies.

singlelinecheck= true (default) If the caption fits on a single line, then the caption
is centered regardless of justification= value.

false Format of justification= is applied to single line captions.

75

20.4 Caption Package Examples

20.4.1 Caption Package Font Options

Table 14 shows the three options the caption package provides for customizing a
caption’s fonts, where “label”, “separator”, “caption text” are defined in Figure 16
on Page 76. These three options can change any combination of font family, shape,
series, and size, as shown in Table 15.

Figure 14︸ ︷︷ ︸
Caption
Label

:︸︷︷︸

S
ep

arator

Plot of Temperature vs. Time︸ ︷︷ ︸
Caption

Text

Figure 16: Definition of Caption Label, Separator, Text

Font Example #1
The command

\captionsetup{font={default,Large,bf}}
\caption{This is Caption Font Example \#1}

sets all caption font characteristics to their defaults, then gives entire figure caption
(label, separator, and caption text) Large font size and bold font series, as shown in
Figure 17. The font family and shape remain set to their defaults.

Graphic

Figure 17: This is Caption Font Example #1

Note that the above example affects both figure and table captions. Adding a
[figures] optional argument to the \captionsetup command

\captionsetup[figures]{font={default,Large,bf}}

causes only the figure captions to be modified.

Font Example #2
The command

\captionsetup{font=default, textfont={scriptsize,sf}}
\caption{This is Caption Font Example \#2}

76

sets all figure-caption font characteristics to their defaults, then gives the caption
text scriptsize font size and san serif font family, as shown in Figure 18.

Graphic

Figure 18: This is Caption Font Example #2

Font Example #3
The command

\captionsetup{font={default,Large}, labelfont=bf, textfont=sl}
\caption{This is Caption Font Example \#3}

sets all figure-caption font characteristics to their defaults, then gives the entire cap-
tion (label, separator, and caption text) Large font size, gives only the caption label
and separator bold font series, and gives only the caption text slanted font shape, as
shown in Figure 19.

Graphic

Figure 19: This is Caption Font Example #3

20.4.2 Caption Vertical Package Spacing Options

As their names suggest, the space above the caption is specified by the aboveskip
option while the space below the caption is specified by the belowskip option. How-
ever, this is only the case when the default position=bottom option is used. The
position=top option reverses the meanings of the aboveskip and belowskip op-
tions. It can get confusing if the user has customized aboveskip and belowskip for
a top-caption and then wants a bottom caption, in which case the position=top
option would have to be used to produce a bottom caption.

To avoid confusion, the following procedure should be used

1. Think of aboveskip= option as the caption/float spacing. That is, the space be-
tween the caption and the float contents should be specified in the aboveskip=
option.

2. Think of belowskip= option as the caption/text spacing. That is, the space be-
tween the caption and the surrounding text should be specified in the belowskip=
option.

3. Use position=bottom for captions at the bottom of floats. Use position=top
for captions at the top of floats.

Caption Vertical Spacing Example #1
The aboveskip= option modifies the spacing above a caption (the default spacing is
10pt). The following code

77

\captionsetup{aboveskip=1cm}
\caption{Vertical Spacing Example \#1}

causes produces a 1cm spacing above the caption as shown in Figure 20.

Graphic

Figure 20: Vertical Spacing Example #1

Caption Vertical Spacing Example #2

The previous example showed how the aboveskip= option modifies the spacing above
a caption. This example shows how the position=top reverses the meaning of
aboveskip and belowskip.

The following code

\captionsetup{aboveskip=1cm,position=top}
\caption{Vertical Spacing Example \#2}

causes produces a 1cm spacing below the caption as shown in Table 19

Table 19: Vertical Spacing Example #2

a b
c d

Caption Vertical Spacing Example #3

The previous example showed the position=top reverses the meaning of aboveskip
and belowskip for use in placing a caption above tables.

If table captions will be placed above the table while most figure captions will
be placed below the figure, it is convenient to make the top position the default for
table captions

\captionsetup{aboveskip=1cm,belowskip=0pt}
\captionsetup[figure]{position=bottom}
\captionsetup[table]{position=top}
...
\caption{Table for Vertical Spacing Example \#3}
\caption{Figure for Vertical Spacing Example \#3}

causes produces a 1cm spacing below table captions (as shown in Table 20) and a
1cm spacing above figure captions (as shown in Figure 21).

78

Table 20: Table for Vertical Spacing Example #3

a b
c d

Graphic

Figure 21: Figure for Vertical Spacing Example #3

20.4.3 Caption Package Label Options

Caption Label Example #1
The following code

\captionsetup{labelformat=simple}
\caption{This is Caption Label Example \#1}

define the label format to be simple, as shown in Figure 22. The simple format is
usually the same as the default, although the document class could define default
differently.

Graphic

Figure 22: This is Caption Label Example #1

Caption Label Example #2
The following code

\captionsetup{labelformat=parens}
\caption{This is Caption Label Example \#2}

define the label format to be parens, as shown in Figure 23. This format has no
Figure name, and instead just has the figure number surrounded by parentheses.

Graphic

Figure (23): This is Caption Label Example #2

79

Caption Label Example #3
The following code

\captionsetup{labelformat=empty, labelsep=none}
\caption{This is Caption Label Example \#3}

define the label format to be empty, as shown in Figure 23. Since no figure number
is displayed, it is difficult to determine that it is Figure 23.

Graphic

This is Caption Label Example #3

Caption Label Example #4
The following code

\captionsetup{labelformat=default, labelsep=period}
\caption{This is Caption Label Example \#4}

changes the caption separator from the default colon to a period, as shown in Fig-
ure 25.

Graphic

Figure 25. This is Caption Label Example #4

Caption Label Example #5
The following code

\captionsetup{labelformat=default, labelsep=newline}
\caption{This is Caption Label Example \#5}

changes the caption separator to a newline, as shown in Figure 25.

Graphic

Figure 26
This is Caption Label Example #5

20.4.4 Caption Package Formatting Options

Formatting Example #1: Caption Width
The following code

\captionsetup{width=3in}
\caption{This is an example of customizing the caption width}

80

causes the caption to be typeset in a 3-inch wide column, as shown in Figure 27.

Graphic

Figure 27: This is an example of customizing
the caption width

Formatting Example #2: Default Format
Figure 28 - Figure 36 on Page 82 show examples of the seven possible justification=
values used with format=default. These figures are produced by the following code

\captionsetup{format=default,justification=justified}

\caption{Caption with default format and justified justification.

Caption with default format and justified justification.

Caption with default format and justified justification.}

...

\captionsetup{format=default,justification=centering}

\caption{Caption with default format and centering justification.

Caption with default format and centering justification.

Caption with default format and centering justification.}

...

\captionsetup{format=default,justification=centerlast}

\caption{Caption with default format and centerlast justification.

Caption with default format and centerlast justification.

Caption with default format and centerlast justification.}

...

\captionsetup{format=default,justification=centerfirst}

\caption{Caption with default format and centerfirst justification.

Caption with default format and centerfirst justification.

Caption with default format and centerfirst justification.}

...

\captionsetup{format=default,justification=raggedright}

\caption{Caption with default format and raggedright justification.

Caption with default format and raggedright justification.

Caption with default format and raggedright justification.}

...

\captionsetup{format=default,justification=RaggedRight}

\caption{Caption with default format and RaggedRight justification.

Caption with default format and RaggedRight justification.

Caption with default format and RaggedRight justification.}

...

\captionsetup{format=default,justification=raggedleft}

\caption{Caption with default format and raggedleft justification.

Caption with default format and raggedleft justification.

Caption with default format and raggedleft justification.}

As can be seen in Figure 28 - Figure 36, the above code causes the first line of the
caption to be formatted the same as all of the other lines.

Formatting Example #3: Hang Format
The previous example used the format=default option. This previous example
creates Figure 37 - Figure 45, showing the seven possible justification= values
used with format=hang. These figures are produced by the following code

81

Graphic
Figure 28: Caption with default format and jus-
tified justification. Caption with default format
and justified justification. Caption with default
format and justified justification.

Graphic
Figure 29: Caption with default format and cen-
terlast justification. Caption with default for-
mat and centerlast justification. Caption with

default format and centerlast justification.

Graphic
Figure 30: Caption with default format and

centerfirst justification. Caption with default
format and centerfirst justification. Caption
with default format and centerfirst justification.

Graphic
Figure 31: Caption with default format and
centering justification. Caption with default
format and centering justification. Caption

with default format and centering justification.

Graphic
Figure 32: Caption with default for-

mat and Centering justification. Cap-
tion with default format and Center-
ing justification. Caption with default

format and Centering justification.

Graphic
Figure 33: Caption with default format and
raggedright justification. Caption with default
format and raggedright justification. Caption
with default format and raggedright
justification.

Graphic
Figure 34: Caption with default format and
RaggedRight justification. Caption with de-
fault format and RaggedRight justification.
Caption with default format and RaggedRight
justification.

Graphic
Figure 35: Caption with default format and

raggedleft justification. Caption with default
format and raggedleft justification. Caption

with default format and raggedleft
justification.

Graphic
Figure 36: Caption with default for-

mat and RaggedLeft justification. Cap-
tion with default format and RaggedLeft

justification. Caption with default
format and RaggedLeft justification.

82

Graphic
Figure 37: Caption with hang format and jus-

tified justification. Caption with
hang format and justified justifica-
tion. Caption with hang format and
justified justification.

Graphic
Figure 38: Caption with hang format and cen-

terlast justification. Caption with
hang format and centerlast justifica-
tion. Caption with hang format and

centerlast justification.

Graphic
Figure 39: Caption with hang format

and centerfirst justification. Caption
with hang format and centerfirst
justification. Caption with hang
format and centerfirst justification.

Graphic
Figure 40: Caption with hang format and

centering justification. Caption
with hang format and centering
justification. Caption with hang

format and centering justification.

Graphic
Figure 41: Caption with hang format and

Centering justification. Caption
with hang format and Centering
justification. Caption with hang

format and Centering justification.

Graphic
Figure 42: Caption with hang format and

raggedright justification. Caption
with hang format and raggedright
justification. Caption with hang
format and raggedright
justification.

Graphic
Figure 43: Caption with hang format and

RaggedRight justification. Caption
with hang format and RaggedRight
justification. Caption with hang
format and RaggedRight justifica-
tion.

Graphic
Figure 44: Caption with hang format and

raggedleft justification. Caption
with hang format and raggedleft
justification. Caption with hang

format and raggedleft justification.

Graphic
Figure 45: Caption with hang format

and RaggedLeft justifica-
tion. Caption with hang for-

mat and RaggedLeft justifica-
tion. Caption with hang format

and RaggedLeft justification.

83

\captionsetup{format=hang,indention=0pt,justification=justified}

\caption{Caption with hang format and justified justification.

Caption with hang format and justified justification.

Caption with hang format and justified justification.}

...

\captionsetup{format=hang,indention=0pt,justification=centering}

\caption{Caption with hang format and centering justification.

Caption with hang format and centering justification.

Caption with hang format and centering justification.}

...

\captionsetup{format=hang,indention=0pt,justification=centerlast}

\caption{Caption with hang format and centerlast justification.

Caption with hang format and centerlast justification.

Caption with hang format and centerlast justification.}

...

\captionsetup{format=hang,indention=0pt,justification=centerfirst}

\caption{Caption with hang format and centerfirst justification.

Caption with hang format and centerfirst justification.

Caption with hang format and centerfirst justification.}

...

\captionsetup{format=hang,indention=0pt,justification=raggedright}

\caption{Caption with hang format and raggedright justification.

Caption with hang format and raggedright justification.

Caption with hang format and raggedright justification.}

...

\captionsetup{format=hang,indention=0pt,justification=RaggedRight}

\caption{Caption with hang format and RaggedRight justification.

Caption with hang format and RaggedRight justification.

Caption with hang format and RaggedRight justification.}

...

\captionsetup{format=hang,indention=0pt,justification=raggedleft}

\caption{Caption with hang format and raggedleft justification.

Caption with hang format and raggedleft justification.

Caption with hang format and raggedleft justification.}

As can be seen in Figure 37 - Figure 45, the format=hang option in the above code
causes the second and subsequent lines to have additional indentation.

20.5 Further Customization

The caption has additional feature for users who want additional customization. This
section provides a brief description, with detailed instruction available in [12].

20.5.1 Caption Styles

Users can define a collection of caption options, called caption styles. The entire
collection of options can be specified with a single option. For example, the caption
package automatically defines a style named default such that

\captionsetup{style=default}

is equivalent to

\captionsetup{font=default, labelfont=default,
textfont=default, parskip=0pt,
labelformat=simple, labelsep=colon,
format=default, indentation=0pt,
hangindent=0pt, margin=0pt,
parinident=0pt, justification=justified,
singlelinecheck=true}

84

The \DeclareCaptionStyle can be used in the document preamble to define other
caption styles. These styles can either explicitly define all of the parameters or start
with the default style and modify only the unique option values.

For example, the following \DeclareCaptionStyle command in the document’s
preamble

\DeclareCaptionStyle{BigLeft}{style=default, labelsep=period,
font=Large, labelfont=bold,
justification=RaggedRight,
singlelinecheck=false}

allows the BigLeft style to be referenced by
\captionsetup{style=BigLeft}
\caption{This Caption uses BigLeft Style}

as shown in Figure 46.

Graphic

Figure 46
This Caption uses BigLeft Style

20.5.2 Additional Option Values

The caption package provides commands such as
\DeclareCaptionFont
\DeclareCaptionLabelSeparator
\DeclareCaptionLabelFormat
\DeclareCaptionFormat
\DeclareCaptionLabelJustification

to provide additional option values. These commands can only be issued in the
document’s preamble.

Option Definition Example #1
Table 15 on Page 73 defines the possible font options that can be used by the

font=, labelfont=, and textfont= options. The \DeclareCaptionFont allows the
user to define additional values that can be used by these options. For example, the
following command in the document’s preamble

\DeclareCaptionFont{BigAndBold}{\Large\bfseries}

defines a BigAndBold font such that the following code
\captionsetup{font=BigAndBold}
\caption{This Caption uses a Custom Font}

produces the caption in Figure 47

Graphic

Figure 47: This Caption uses a Custom Font

85

Option Definition Example #2
Table 17 on Page 74 describes how the labelformat= option controls how the “Figure
33” portion of the caption is displayed. The \DeclareCaptionLabelFormat allows
the user to define additional labelformat= options. The symbols #1 and #2 are used
in the definition to specify where the “Figure” and Figure Number are inserted. For
example the following command in the document’s preamble

\DeclareCaptionLabelFormat{hash}{#1 {\#}#2}

defines a hash formatting option such that a hash mark # is placed between just
before the figure number. However, this definition has a flaw in that the space
in the definition after #1 is not desired should #1 be empty. The \bothIfFirst
command typesets both of its arguments if the first argument exists, otherwise neither
argument is typeset. Similarly, the \bothIfSecond command typesets both of its
arguments if the second argument exists, otherwise neither argument is typeset. The
new definition using \bothIfFirst is

\DeclareCaptionLabelFormat{hash}{\bothIfFirst{#1}{ }{\#}#2}

This definition, when placed in the document’s preamble allows the following code

\captionsetup{labelformat=hash}
\caption{This Caption has a Custom Label Format}

to produce the caption in Figure 48.

Graphic

Figure #48: This Caption has a Custom Label Format

Option Definition Example #3
Table 17 on Page 74 defines the possible values for the labelset= option. The
\DeclareCaptionLabelSeparator command allows users to define additional values
for the labelset= option. For example, the following command in the document’s
preamble

\DeclareCaptionLabelSeparator{arrow}{\quad\ensuremath{\Rightarrow}\quad}

defines an arrow label separator such that the following code

\captionsetup{labelsep=arrow}
\caption{This Caption has a Custom Label Separator}

produce the caption in Figure 49.

Graphic

Figure 49 ⇒ This Caption has a Custom Label Separator

86

Option Definition Example #4

Table 18 on Page 75 specifies the values that can be used by the format= option.
The \DeclareCaptionFormat command allows users to define additional values for
the format= option.

The symbols #1, #2, #3 are used in the definition to specify where the various
building blocks appear, where #1 represent the caption label, #2 represents the cap-
tion separator, and #3 represents the caption text (where these terms are defined
in Figure 16 on Page 76). For example, the following command in the document’s
preamble

\DeclareCaptionFormat{reverse}{#3#2\ensuremath{\ll}#1\ensuremath{\gg}}

defines the reverse format with the caption text appearing first, followed by the
separator, and then the caption label surrounded by double angle brackets \ll and
\gg. The following code

\captionsetup{format=reverse,labelsep=empty}
\caption{This Caption has a Custom Format}

produces the caption in Figure 50.

Graphic

This Caption has a Custom Format
�Figure 50�

21 Non-Floating Figures

Since non-floating figures can produce large sections of vertical whitespace, non-
floating figures are generally considered poor typesetting style. Instead, users are
strongly encouraged to use the figure environment’s [!ht] optional argument which
moves the figure only if there is not enough room for it on the current page.

As described in Section 17, LATEX allows figures and tables to “float” to improve
the document’s formatting. Occasionally, it is desirable to have a figure appear
exactly where it appears in the LATEX source. Although the \caption command
can only be used figure and table environments, the caption package defines the
\captionof command which takes two arguments: the type of caption (table, figure,
etc) and the caption text, allowing the \captionof command can be used outside of
figure and table environments. Using

\captionof{figure}{caption text}

creates a figure caption, regardless of whether it appears in a figure environment.
Likewise,

\captionof{table}{caption text}

creates a table caption, regardless of its location. The following commands
This is the text before the figure.
\\[\intextsep]

\begin{minipage}{\linewidth}
\centering
\includegraphics[width=2in]{graphic}%
\captionof{figure}{This is a non-floating figure}
\label{fig:non:float}

\end{minipage}
\\[\intextsep]
This is the text after the figure.

87

create a non-floating figure. Notes on non-floating figures:

• The minipage environment is needed to prevent a page break within the figure.

• The \\[\intextsep] commands start new lines and add vertical space before
and after the figure. Any amount of space can be used, \intextsep (see
Section 19.1 on Page 64) was used to make the non-floating figure spacing
consistent with floating figure spacing.

• Normally, figures are placed on the page in the same order they were submitted
to the figure queue. However, non-floating figures are placed immediately,
leapfrogging any unprocessed figures sitting in the figure queue. If this happens,
the figures do not appear in numerical order34. To avoid these out-of-order
figures, force all floating figures to be processed by issuing a \clearpage or
\FloatBarrier command before the non-floating figure (see Section 17.3 on
Page 59).

• The \captionof command is also useful for creating marginal figures (Sec-
tion 22 on Page 89), and creating a table beside a figure (Section 30 on
Page 109).

21.1 Non-floating Figures without the caption package

As described above, the caption package’s \captionof command creates captions
outside of figure/table environments. This section describes how to do this without
using the caption package.

The \caption command can be used in figure and table environments because
these environments define the internal command \@captype to “figure” and “table”,
respectively. By defining \@captype, the \caption command can be used outside of
figure and table environments. A \makeatletter–\makeatother pair must enclose
\@captype to allow @ to be used in a command name. While this can be done
manually each time by

\includegraphics{file}
\makeatletter\def\@captype{figure}\makeatother
\caption{This is the caption}

it is easier to define a command to do this. Including the following commands in the
document’s preamble

\makeatletter
\newcommand\figcaption{\def\@captype{figure}\caption}
\newcommand\tabcaption{\def\@captype{table}\caption}

\makeatother

defines the \figcaption and \tabcaption commands. Using \figcaption creates
figure captions, regardless of whether it appears in a figure environment. Likewise,
\tabcaption creates table caption, regardless of it location.

21.2 The float Package’s [H] Placement Option

The float package35adds an [H] option to the figure environment which produces a
non-floating figure. The following code

34In these situations, the Table of Figures lists the figures in order of appearance, not in numerical
order.

35The float package allows users to define new types of floats, such as “Program” or “Algorithm.”
It also defines optional boxed and ruled float styles. These optional float styles redefine the \caption
command such that the caption is always typeset at a particular location, regardless of where the
\caption command is located, preventing construction of side-by-side and other complex figures.

88

\usepackage{float}
...
\begin{figure}[H]

.....
\end{figure}

produces a non-floating figure.
When the [H] figure does not fit on a page, the figure is moved to the top of the

next page. If there were any footnotes on the first page, they appear immediately
after the text instead of at the bottom of the page. If this behavior is undesirable,
then the \captionof command described in Section 21 on Page 87 can be used
instead of the float package’s [H] placement option.

22 Marginal Figures

The \marginpar command places notes in the margin of the document. The marginal
notes are placed in the right margin (or the outside margin for twoside documents)
unless the \reversemarginpar command is used (as it is in this document). The
width of the marginal column is controlled by the \marginparwidth length, while
the horizontal spacing between the text and the marginal notes is controlled by the
\marginparsep length.

Marginal notes are placed such that the baseline of their first line is vertically
aligned with the baseline of the text which contains the \marginpar command.

Marginal notes are never broken across a page; if a marginal note starts near the
bottom of the page, it continues into the bottom margin. If the previous marginal
note would interfere with a marginal note, LATEX “bumps” the latter marginal note
downward. Marginal notes cannot be bumped to the next page; they are instead
bumped into the bottom margin. As a result, the position of the marginal notes
may have to be adjusted before the final printing to avoid marginal notes near page
breaks.

Since the figure environment cannot be used in a marginal note, floating mar-
ginal figures are not possible. However, the \captionof command defined in Sec-
tion 21 on Page 87 can be used to construct a non-floating marginal figure. For

Graphic

Figure 51: This
is a Marginal
Figure

example, Figure 51 was produced by

...to construct a non-floating marginal figure.
\marginpar{\centering

\includegraphics[width=\marginparwidth]{graphic}%
\captionof{figure}{This is a Marginal Figure}
\label{fig:marginal:fig} }

For example, \Figref{fig:marginal:fig} was...

The bottom of the graphic in Figure 51 is aligned with the text baseline where the
\marginpar command is located. Notes on marginal figures:

• Since captions for marginal figures generally are narrow, using either of the
caption package commands

\captionstyle{justification=raggedright}
\captionstyle{justification=raggedleft}

before the \caption command may provide better caption formatting. Addi-
tionally, the caption package command

\captionsetup{font=small}

can be used to decrease the size of the caption font. See Section 20 on Page 69
for caption information.

89

• Like the non-floating figures in Section 21 on Page 87, the marginal figures are
placed ahead of any unprocessed floats. Thus, a \clearpage or \FloatBarrier
command must be issued before the marginal note if one wants to keep the
figures in order.

• Marginal notes are placed by the routine which also places figures and tables.
If many figures, tables, and marginal notes are being used, it is possible to
exceed the number of unprocessed floats permitted by LATEX. The morefloats
package can mitigate these problems (see Section 17.4 on Page 60).

23 Wide Figures

Typesetting readability rules limit the number of characters in a line of text. Unless
a large font or two columns are used, these readability rules result in wide margins
(especially when using 8.5 x 11 inch letter paper). Section 22 demonstrated how
these wide margins can be used for marginal figures. Another option is to construct
a regular floating figure which extends into one or both margins. This is done by
placing a wide list environment inside the figure. For example, a narrow environment
can be defined by including the following code in the preamble of your document

\newenvironment{narrow}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}}%

\item[]}{\end{list}}

For example, any text which occurs between \begin{narrow}{1in}{2in} is indented
by 1 inch on the left side and 2 inches on the right side. When negative lengths are
used, the contents extend beyond the margins.

23.1 Wide Figures in One-sided Documents

The following code uses this narrow environment to make the figure extend 1 inch
into the left margin, producing Figure 52.

\begin{figure}
\begin{narrow}{-1in}{0in}

\includegraphics[width=\linewidth]{wide}
\caption{This is a wide figure}

\end{narrow}
\end{figure}

A Very, Very Wide Graphic

Figure 52: This is a wide figure

When marginal notes are used, it may be desired to make the wide figure extend
exactly to the edge of the marginal notes (making the figure width be \linewidth

90

+ \marginparwidth + \marginparsep). This can be done by defining a new length
\marginwidth and setting it to be \marginparwidth + \marginparsep. For exam-
ple,

\newlength{\marginwidth}
\setlength{\marginwidth}{\marginparwidth}
\addtolength{\marginwidth}{\marginparsep}

then use {-\marginwidth} in the \begin{narrow} argument.

23.2 Wide Figures in Two-sided Documents

For two-sided documents, it may be desired to extend the wide figures into the
binding-side margin (i.e., the left margin for odd pages and the right margin for even
pages). In these cases, the ifthen package’s \ifthenelse command can be used to
choose between odd-page code and even-page code. For example,

\usepackage{ifthen}

...

\begin{figure}

\ifthenelse{\isodd{\pageref{fig:wide}}}%

{% BEGIN ODD-PAGE FIGURE

\begin{narrow}{0in}{-1in}

\includegraphics[width=\linewidth]{file}

\caption{Figure Caption}

\label{fig:wide}

\end{narrow}

}% END ODD-PAGE FIGURE

{% BEGIN EVEN-PAGE FIGURE

\begin{narrow}{-1in}{0in}

\includegraphics[width=\linewidth]{file}

\caption{Figure Caption}

\label{fig:wide}

\end{narrow}

}% END EVEN-PAGE FIGURE

\end{figure}

Since the \pageref command is used as input to \ifthenelse, the figure may not
be properly typeset until LATEX is run enough times to cause the cross-references to
converge.

24 Landscape Figures

In a document with portrait orientation, there are three methods for producing
figures with landscape orientation.

1. The lscape package provides a landscape environment, which treats the left
edge of the paper as the top of the page, causing any text, tables, or figures in
the landscape environment to have landscape orientation.

2. The rotating package provides a sidewaysfigure environment which is similar
to the figure environment except that the figures have landscape orientation.

3. The rotating package provides a \rotcaption command which is similar to the
\caption command except that caption has landscape orientation.

Differences between methods

• Both options 1 and 2 place the landscape figure on a separate page. Option 3
produces an individual float which need not be on its own page.

91

• While Option 2 produces only rotated figures, the landscape environment
in Option 1 is a general-purpose environment, which can produce landscape
pages containing any combination of text, tables, and figures. The landscape
environment can page-breaking capability, so multiple landscape pages can be
produced36.

• The full-page figure produced by Option 2 floats to provide better document
formatting, while the figure produced by Option 1 cannot float37.

• Since Options 1 and 3 use the figure environment, they can be used in con-
junction with the endfloat package (see Section 19.6 on Page 68).

• Options 1 and 2 are best suited for side-by-side landscape graphics (for side-
by-side methods see Section 28 on Page 104).

24.1 Landscape Environment

The lscape package (which is part of the standard “graphics bundle” distributed
with LATEX) defines the landscape environment, which provides a method of placing
landscape pages in a portrait document. The landscape pages are rotated such that
the left edge of the portrait page is the top edge of the landscape page.

Entering \begin{landscape} prints all unprocessed portrait floats and then
switches to landscape orientation. Likewise, \end{landscape} prints all unprocessed
landscape floats and then switches back to portrait orientation.

The entire contents of the landscape environment is typeset with landscape ori-
entation. This may include any mixture of text, figures, and tables. If the landscape
environment contains only a figure environment

\begin{landscape}
\begin{figure}

\centering
\includegraphics[width=4in]{graphic}
\caption{Landscape Figure}

\end{figure}
\end{landscape}

the landscape environment produces a landscape figure. Note that since the landscape
environment starts a new page, it may result in a partially-blank page.

24.2 Sidewaysfigure Environment

The rotating package provides the sidewaysfigure environment which produces fig-
ures with landscape orientation38. For example

\begin{sidewaysfigure}
\centering
\includegraphics[width=4in]{graphic}
\caption{Sidewaysfigure Figure}

\end{sidewaysfigure}

produces Figure 53.

36The landscape environment works very well with the longtable package to produce multiple-page
landscape tables.

37Figures issued in the landscape environment can float within the landscape pages

38The rotating package also provides a sidewaystable environment for producing tables with
landscape orientation.

92

G
ra

ph
ic

F
ig

ur
e

53
:

Si
de

w
ay

sfi
gu

re
F
ig

ur
e

93

Unlike the landscape environment, the figure produced by sidewaysfigure can
float within the portrait pages to avoid the partially-blank page that the landscape
environment may produce. Note that the landscape environment is much more
flexible, allowing the landscape pages to consist of a mixture of text, tables, and
figures.

The default orientation of the figures produced by sidewaysfigure depends on
whether the document is processed with the oneside or twoside documentclass
option

• When the oneside option is chosen, the bottom of graphic is towards the right
edge of the portrait page.

• When the twoside option is chosen, the bottom of graphic is towards the
outside edge of the portrait page.

This default behavior can be overridden by options to the \usepackage{rotating}
command.

\usepackage[figuresleft]{rotating}

causes the bottom of the sidewaysfigure graphics to be towards the left edge of
the portrait page (regardless of oneside or twoside options). Similarly,

\usepackage[figuresright]{rotating}

causes the bottom of the sidewaysfigure graphics to be towards the right edge of
the portrait page.

24.3 Rotcaption Command

The methods in Sections 24.1 and 24.2 both produce full-page landscape figures,
which may not be necessary for smaller landscape figures. The rotating package’s
\rotcaption command can be used to construct smaller landscape figures. For
example

\begin{figure}
\centering
\begin{minipage}[c]{1in}

\hfill\includegraphics[width=2in,angle=90]{graphic}
\end{minipage}%
\hspace{0.2in}%
\begin{minipage}[c]{0.5in}

\captionsetup{width=2in}
\rotcaption{This is a caption created by the Rotcaption command}
\label{fig:rotcaption}

\end{minipage}
\end{figure}

produces Figure 54.
The caption produced by \rotcaption is always rotated such that its bot-

tom is towards the right edge of the paper. Unlike the methods in Sections 24.1
and 24.2, the \rotcaption command does not rotate the graphics. Therefore, the
\includegraphics command in the above example requires the angle=90 option.

25 Captions Beside Figures

Although the caption of a figure is generally placed above or below the graphic, this
section describes how to place the caption beside the graphic39.

39Since the figure environment defined by the float package places the caption below the body,
captions beside figures cannot be produced with the float package’s figure environment. Other

94

G
ra

ph
ic

F
ig

ur
e

54
:

T
hi

s
is

a
ca

pt
io

n
cr

ea
te

d
by

th
e

R
ot

ca
pt

io
n

co
m

m
an

d

25.1 The Sidecap Package

The easiest way of constructing side captions is to use the sidecap package. When
a \caption command is used in the SCfigure and SCtable environments defined by
the sidecap package, the captions are automatically placed to the side of the contents
of the environment. For example,

\usepackage{sidecap}
...
\begin{SCfigure}

\includegraphics[width=3in]{graphic}
\caption{This is a SCfigure}

\end{SCfigure}

produces Figure 55.

Graphic
Figure 55: This is a SCfigure

The following four options can be specified in the \usepackage command

outercaption This option places the caption to the left for left (even) pages and
on the right for right (odd) pages. (This is the default)

innercaption This option places the caption to the right for left (even) pages and
on the left for right (odd) pages.

leftcaption This option places the caption on the left.

rightcaption This option places the caption on the right.

The SCfigure environment includes two optional arguments

aspects of the float package can be used as long as the \restylefloat command is not issued.

95

• The first optional argument specifies the relative width of caption compared to
the figure. A large value (e.g., 100) reserves the maximum possible width. The
default is 1.

• The second optional argument specifies the float position parameter (e.g. [htp]
or [!ht] (see Section 17.2 on Page 58).

25.2 Side Captions without Sidecap

If the sidecap package does not provide sufficient flexibility, users can produce side
captions with the methods in this section. Section 25.2.1 shows how to place the
caption to the left of the graphic. Placing the caption to the right of the graphic
proceeds similarly. For twoside documents, Section 25.2.2 shows how to place the
caption to the inside of the graphic (to the left of the graphic for odd pages and to
the right of the graphic for even pages).

25.2.1 Caption to Left of Figure

The \caption command places the caption under the figure or table. Minipage
environments can be used to trick the caption command into placing the caption
beside the figure. For example, the commands

\begin{figure}

\centering

\begin{minipage}[c]{.45\linewidth}

\centering

\caption{Caption on the Side}

\label{fig:side:caption}

\end{minipage}%

\begin{minipage}[c]{.45\linewidth}

\centering

\includegraphics[width=\linewidth]{graphic}

\end{minipage}

\end{figure}

produces Figure 56. It may be desirable to place a horizontal spacing command such
as \hfill or \hspace{.05\linewidth} between the minipages.

Figure 56: Caption on the Side Graphic

The caption and graphic in Figure 56 are centered vertically. If it is instead
desired to align the bottoms or tops of graphics and caption, see Section 11.4 on
Page 36.

25.2.2 Caption on Binding Side of Graphic

The above code for Figure 56 places the caption to the left of the graphic. For two-
sided documents, it may be desired to place the caption on the binding side of the
graphics. In these cases, the ifthen package’s \ifthenelse command can be used to
choose between odd-page code and even-page code. For example,

\usepackage{ifthen}

...

\begin{figure}

\centering

96

\ifthenelse{\isodd{\pageref{fig:side:caption}}}

{% BEGIN ODD-PAGE FIGURE

\begin{minipage}[c]{.45\linewidth}

\centering

\caption{Caption on the Side}

\label{fig:side:caption}

\end{minipage}%

\hspace{0.05\linewidth}%

\begin{minipage}[c]{.45\linewidth}

\includegraphics[width=\linewidth]{graphic}

\end{minipage}%

}% END ODD-PAGE FIGURE

{% BEGIN EVEN-PAGE FIGURE

\begin{minipage}[c]{.45\linewidth}

\includegraphics[width=\linewidth]{graphic}

\end{minipage}%

\hspace{0.05\linewidth}%

\begin{minipage}[c]{.45\linewidth}

\centering

\caption{Caption on the Side}

\label{fig:side:caption}

\end{minipage}%

}% END EVEN-PAGE FIGURE

\end{figure}

produces a figure where the caption always appear on the binding side of the graphic.

26 Figures on Even or Odd Pages

The figure environment float-placement algorithm does not control whether a figure
appears on an even or odd page. This section describes how to use the \afterpage
command (part of the afterpage package) and the \ifthenelse command (part of
the ifthen package) to place a figure onto an odd or even page.

The conventional method for creating figures is to put the graphics in a figure
environment. However, since figure environments can float, there is no guarantee
that a figure desired for an even-page won’t end up on an odd page (or vice versa).

Instead, the \captionof command described in Section 21 can be used to create
a figure without using a figure environment. The \ifthenelse command is then
used to place the first graphic on the next even page. This requires repeating the
graphics commands twice, once for the case of the next page being odd and once for
the case of the next page being even. To simplify the resulting code, a \leftfig
command is defined

\newcommand\leftfig{%
\vspace*{\fill}%
\centering
\includegraphics{graphic}
\captionof{figure}{This is on the left (even) page.}
\vspace*{\fill}\newpage}

The left-page figures are then created using this newly-defined \leftfig command
along with the \afterpage and \ifthenelse commands

\afterpage{\clearpage%
\ifthenelse{\isodd{\value{page}}}%

{\afterpage{\leftfig}}%
{\leftfig}}

Notes about odd/even page placement:

97

• To force the figure to a right-hand (odd) page, reverse the order of the \ifthenelse
arguments.

\afterpage{\clearpage%
\ifthenelse{\isodd{\value{page}}}%

{\leftfig}}%
{\afterpage{\leftfig}}

• Because these are non-floating figures, the \value{page} command can be
used to determine the current page. (This is not useful for floating figures since
\value{page} is the current page when the figure environment is processed,
not where it is placed.) Thus using \value{page} is better than \pageref
since \pageref is only correct once the LATEX references have converged).

• When using large figures, it is possible for a pagebreak to occur within the
figure (e.g., between the graphic and the caption). The figure can be forced to
stay together by enclosing it in a minipage environment

\newcommand\leftfig{%
\vspace*{\fill}%
\begin{minipage}{\linewidth}

\centering
\includegraphics{graphic}
\captionof{figure}{This is on the left (even) page.}

\end{minipage}
\vspace*{\fill}\newpage}

• The \afterpage command can sometimes be flaky, in rare cases causing a “lost
float” error. Removing the \clearpage before the \ifthenelse may help this
situation.

\afterpage{\ifthenelse{\isodd{\value{page}}}%
{\afterpage{\leftfig}}%
{\leftfig}}

• In the above example, the figure uses the entire even page. To place the figure at
the top of the even page, modify or remove the \vspace*{\fill} and \newpage
commands

\newcommand\leftfig{%
\centering
\includegraphics{graphic}
\captionof{figure}{This is at the top of the left (even) page.}
\vspace{\floatsep}}

26.1 Figures on Facing Pages

To ease the comparison of two figures in a twoside document, it may be desirable to
position the figures on facing pages. To do this, a procedure similar to the previous
section’s even/odd page-placement must be used. To simplify the resulting code, a
\facingfigures command is defined as

\newcommand\facingfigures{%
\vspace*{\fill}%

\centering
\includegraphics{left}
\captionof{figure}{This is on the left (even) page.}

\vspace*{\fill}\newpage\vspace*{\fill}%
\centering
\includegraphics{right}
\captionof{figure}{This is on the right (odd) page.}

\vspace*{\fill}\newpage}

98

The facing figures are then created using this \facingfigures command along with
the \afterpage and \ifthenelse commands

\afterpage{\clearpage%
\ifthenelse{\isodd{\value{page}}}%

{\afterpage{\facingfigures}}%
{\facingfigures}}

27 Boxed Figures

The term Boxed Figure usually refers to one of two situations

• A box surrounds the figure’s graphic but not the figure’s caption.

• A box surrounds the figure’s graphic and its caption.

The basic method for boxing an item is to simply place the item inside an \fbox
command, which surrounds the object with a rectangular box. The fancybox package
provides boxes of different styles.

27.1 Box Around Graphic

Placing an \fbox command around the \includegraphics command produces a
box around the included graphic. For example, the commands

\begin{figure}
\centering
\fbox{\includegraphics[totalheight=2in]{file}}
\caption{Box Around Graphic, But Not Around Caption}
\label{fig:boxed_graphic}

\end{figure}

place a box around the included figure, as shown in Figure 57.

L1 N

P1q1

q2

L2

P2

Figure 57: Box Around Graphic, But Not Around Caption

27.2 Box Around Figure and Caption

To include both the figure’s graphic and its caption, one may be tempted to move
the \caption command inside the \fbox command. However, this does not work
because \caption can only be used in paragraph mode, while the contents of an
\fbox command are processed in LR mode40.

40LATEX uses three modes: LR mode, paragraph mode, and math mode. See [1, pages 36,103-5].

99

Since the contents of minipage environments and \parbox commands are processed
in paragraph mode, the \caption command can be included in the \fbox by enclos-
ing the \fbox contents inside a minipage environment or a \parbox command. Since
both minipages and parboxes require a width specification, there is no direct way to
make the \fbox exactly as wide the graphic and caption.

For example, the commands

\begin{figure}
\centering
\fbox{ \begin{minipage}{4 in}

\centering
\includegraphics[totalheight=2in]{pend}
\caption{Box Around Figure Graphic and Caption}
\label{fig:boxed_figure}

\end{minipage} }
\end{figure}

place a box around the figure’s graphic and caption, as shown in Figure 58

L1 N

P1q1

q2

L2

P2

Figure 58: Box Around Figure Graphic and Caption

It is usually a trial-and-error process to determine a minipage width which causes
the box to have a snug fit around the caption and graphic. This trial-and-error can
be avoided by the following approaches.

1. Choose an arbitrary minipage width and force the graphic to be as wide as the
minipage

\includegraphics[width=\linewidth]{pend}

2. When it is desired to specify the graphic height, the proper minipage width
can be calculated by placing the graphic in a box and measuring the height of
the box.

\newsavebox{\mybox}
\newlength{\mylength}
\sbox{\mybox}{\includegraphics[height=3in]{file}}
\settowidth{\mylength}{\usebox{\mybox}}
\begin{figure}

\centering
\fbox{ \begin{minipage}{\mylength}

\centering
\usebox{\mybox}
\caption{Box Around Figure Graphic and Caption}
\label{fig:boxed_figure}

100

\end{minipage} }
\end{figure}

3. To ensure a one-line caption, the minipage can be made as wide as the caption
by estimating the caption width with a \settowidth command
\newlength{\mylength}
\settowidth{\mylength}{Figure XX: Box Around Figure Graphic and Caption}
\fbox{ \begin{minipage}{\mylength}
...

27.3 Customizing fbox Parameters

In Figures 57 and 58, the box is constructed of 0.4 pt thick lines with a 3 pt space
between the box and the graphic. These two dimensions can be customized by
setting the LATEX length variables \fboxrule and \fboxsep, respectively, with the
\setlength command. For example, the commands

\begin{figure}
\centering
\setlength{\fboxrule}{3pt}
\setlength{\fboxsep}{1cm}
\fbox{\includegraphics[totalheight=2in]{pend}}
\caption{Graphic with Customized Box}
\label{fig:boxed_custom}

\end{figure}

place a box with 3 pt thick lines which is separated from the graphic by 1 centimeter,
as shown in Figure 59

L1 N

P1q1

q2

L2

P2

Figure 59: Graphic with Customized Box

27.4 The Fancybox Package

In Figures 57, 58, and 59, the \fbox command was used to place standard rec-
tangular boxes around the figures. The fancybox package provides four commands
\shadowbox, \doublebox, \ovalbox, and \Ovalbox which produce other types of
boxes as shown in Table 21.

Like \fbox, the separation between these boxes and their contents is controlled
by the LATEX length \fboxsep. The length \shadowsize is set with the \setlength

101

Table 21: FancyBox Commands

Command Parameters

\shadowbox{Example}

Example
• The frame thickness is \fboxrule.
• The shadow thickness is \shadowsize (which defaults to 4 pt).

\doublebox{Example}

Example

• The inner frame thickness is .75\fboxrule
• The outer frame thickness is 1.5\fboxrule
• The spacing between the frames is 1.5\fboxrule + 0.5pt.

\ovalbox{Example}�� ��Example

• The frame thickness is \thinlines
• Entering \cornersize{x} the diameter of the corners x times the
minimum of the width and the height. The default is 0.5.
• The \cornersize* command directly sets the corner diameter. For
example, \cornersize*{1cm} makes the corner diameters 1 cm.

\Ovalbox{Example}�� ��Example
\Ovalbox is the same as \ovalbox except that the line thickness is
controlled by \thicklines.

command, as was done for \fboxrule and \fboxsep in Section 27.3 on Page 101.
The lines for \ovalbox and \Ovalbox have thicknesses corresponding to the picture
environment’s \thicklines and \thinlines, which are not lengths and thus can-
not be changed with the \setlength command. The values of \thicklines and
\thinlines depend on the size and style of the current font. Typical values are
0.8 pt for \thicklines and 0.4 pt for \thinlines. For example, the commands

\begin{figure}
\centering
\shadowbox{ \begin{minipage}{3.5 in}

\centering
\includegraphics[totalheight=2in]{pend}
\caption{Shadowbox Around Entire Figure}
\label{fig:boxed_fancy}

\end{minipage} }
\end{figure}

place a shadow box around the figure’s graphic and caption, as shown in Figure 60.

102

L1 N

P1q1

q2

L2

P2

Figure 60: Shadowbox Around Entire Figure

103

Part V

Complex Figures

28 Side-by-Side Graphics

The commands necessary for side-by-side graphics depend on how the user wants
the graphics organized. This section covers three common groupings of side-by-side
graphics

1. The side-by-side graphics are combined into a single figure.

2. The side-by-side graphics each form their own figure (e.g., Figure 63 and Fig-
ure 64).

3. The side-by-side graphics each form a subfigure (e.g., Subfigure 65a and Sub-
figure 65b) which are part of a single figure (Figure 65).

This section describes the following two methods for constructing the three types of
groupings

a) Successive \includegraphics commands.

b) Side-by-side minipages, each of which contains an \includegraphics com-
mand.

It is very important to understand the material in Section 2 on Page 10 when con-
structing side-by-side figures. Side-by-side figures are created by placing boxes (either
\includegraphics or minipages) beside each other on a line.

28.1 Side-by-Side Graphics in a Single Figure

The easiest method for creating side-by-side graphics in a single figure is successive
\includegraphics commands, although using side-by-side minipages makes it easier
to vertically align the graphics.

28.1.1 Using Side-by-Side includegraphics Commands

The following code

\begin{figure}
\centering
\includegraphics[width=1in]{graphic}%
\hspace{1in}%
\includegraphics[width=2in]{graphic}
\caption{Two Graphics in One Figure}

\end{figure}

produces Figure 61 which is 4 inches wide (1 inch for the first graphic, 1 inch for
the \hspace, and 2 inches for the second graphic) which is centered on the page.
The \hspace command can be omitted or replaced with \hfill, which pushes the
graphics to the margins (see Section 10.2 on Page 32).

28.1.2 Using Side-by-Side Minipages

Placing the \includegraphics commands inside minipage environments provides
the user more control over the graphics’ vertical placement. For example

104

Graphic
Graphic

Figure 61: Two Graphics in One Figure

\begin{figure}
\centering
\begin{minipage}[c]{0.5\linewidth}

\centering \includegraphics[width=1in]{graphic}
\end{minipage}%
\begin{minipage}[c]{0.5\linewidth}

\centering \includegraphics[width=2in]{graphic}
\end{minipage}
\caption{Centers Aligned Vertically}

\end{figure}

produces Figure 62, which has vertically-centered graphics.

Graphic Graphic

Figure 62: Centers Aligned Vertically

Notes on this example:

• Like any other LATEX object, minipages are positioned such that their reference
point is aligned with the current baseline. By default, minipages use the [c]
option which places the reference point at the vertical center of the minipage,
the [t] option places the reference point at the baseline of the minipage’s
top line and the [b] option places the reference point at the baseline of the
minipage’s bottom line (see Section 11.4 on Page 36).

• The % after the first \end{minipage} command prevents an interword space
from being inserted between the minipage boxes (see Section 10.2 on Page 32).

• When the widths of the minipages do not add to 1.0\linewidth, the \hspace
or \hfill commands can be used to specify horizontal spacing (see Section 10.2
on Page 32).

28.2 Side-by-Side Figures

In the previous section, multiple minipage environments were used inside a figure
environment to produce a single figure consisting of multiple graphics. Placing
\caption statements inside the minipages makes the minipages themselves become
figures. For example

\begin{figure}

\centering

%%----start of first figure----

\begin{minipage}[t]{0.4\linewidth}

\centering

\includegraphics[width=1in]{graphic}

105

\caption{Small Box} \label{fig:side:a}

\end{minipage}%

\hspace{1cm}%

%%----start of second figure----

\begin{minipage}[t]{0.4\linewidth}

\centering

\includegraphics[width=1.5in]{graphic}

\caption{Big Box} \label{fig:side:b}

\end{minipage}

\end{figure}

produces Figures 63 and 64.

Graphic

Figure 63: Small Box

Graphic

Figure 64: Big Box

Notes about this example:

• Although the above commands include one figure environment, the commands
produce two figures because two \caption commands are used.

• The figures are put inside two minipages whose widths are 40% of the width of
the figure environment that are separated by 1cm of horizontal space. (Note
that comment characters after \end{minipage} and \hspace{1cm} ensure that
the spacing is exactly 1cm by preventing interword spaces between the mini-
pages and the horizontal space.)

By default, the figure captions are typeset to the entire width of the minipage.
The 1cm of horizontal space was used to ensure horizontal spacing between the
captions (for longer captions and/or wider graphics).

Alternatively, the caption widths could be limited by the caption package’s
margin or width keywords (see Table 18 on Page 75).

• The \centering command immediately after \begin{figure} causes the group
of two minipages and spacing to be centered in the figure environment.

• The \centering command inside the minipage causes the graphics to be cen-
tered within the minipage.

28.3 Side-by-Side Subfigures

It may be desirable to refer to side-by-side graphics both individually and as a
group. The \subfloat command (from the subfig package, described in Section 32
on Page 113) allows a group of graphics to be individually defined as subfigures that
are defined to be part of a single figure. For example

\usepackage{subfig}

...

\begin{figure}

\centering

%%----start of first subfigure----

\subfloat[Small Box with a Long Caption]{

\label{fig:subfig:a} %% label for first subfigure

\includegraphics[width=1.0in]{graphic}}

\hspace{1in}

%%----start of second subfigure----

\subfloat[Big Box]{

106

\label{fig:subfig:b} %% label for second subfigure

\includegraphics[width=1.5in]{graphic}}

\caption{Two Subfigures}

\label{fig:subfig} %% label for entire figure

\end{figure}

produces Figure 65. The commands used to individually and collectively reference
the parts of Figure 65 are shown in Table 22.

Graphic

(a) Small Box with
a Long Caption

Graphic
(b) Big Box

Figure 65: Two Subfigures

Table 22: Subfigure Reference Commands and Their Output for Figure 65 Example

Reference Command Output
\subref{fig:subfig:a} (a)
\subref*{fig:subfig:a} a
\ref{fig:subfig:a} 65a
\subref{fig:subfig:b} (b)
\subref*{fig:subfig:b} b
\ref{fig:subfig:b} 65b
\ref{fig:subfig} 65

28.3.1 Minipage Environments Inside Subfigures

Since Subfigure 65a consists of only the \includegraphics command, the caption
in subfigure 65a is only as wide as the included graphic. If the subfigure instead
consists of the entire minipage, the caption is made as wide as the minipage. For
example

\begin{figure}

\subfloat[Small Box with a Long Caption]{

\label{fig:mini:subfig:a} %% label for first subfigure

\begin{minipage}[b]{0.45\linewidth}

\centering \includegraphics[width=1in]{graphic}

\end{minipage}}%

\hfill

\subfloat[Big Box]{

\label{fig:mini:subfig:b} %% label for second subfigure

\begin{minipage}[b]{0.45\linewidth}

\centering \includegraphics[width=1.5in]{graphic}

\end{minipage}}

\caption{Minipages Inside Subfigures}

\label{fig:mini:subfig} %% label for entire figure

\end{figure}

produces Figure 66, which contains subfigures 66a and 66b.
Since subfigure captions are (by default) as wide as the subfigure, the subfigure

captions in Figure 66 are wider than those in Figure 65. This is because the Figure 65
subfigures contain only the graphics while the Figure 66 subfigures contain minipages
of width 0.5\linewidth.

107

Graphic

(a) Small Box with a Long Caption

Graphic
(b) Big Box

Figure 66: Minipages Inside Subfigures

29 Separate Minipages for Captions

Section 28.2 on Page 105 described how to construct side-by-side figures by placing
the graphics command and \caption command together inside a minipage envi-
ronment. This section describes how placing the graphics command and \caption
command in separate minipage environments can provide better vertical alignment.

The [t] options for the side-by-side minipages in Figures 63 and 64 cause the
graphic baselines to be aligned (see Section 11.4 on Page 36). This works well for
non-rotated graphics as it causes the tops of the captions to be aligned. However,
this does not work well when the graphics bottoms are not aligned. For example,

\begin{figure}

\centering

%%----start of first figure----

\begin{minipage}[t]{.4\linewidth}

\centering

\includegraphics[width=2cm]{graphic}

\caption{Box with a Long Caption}

\end{minipage}%

\hspace{1cm}%

%%----start of second figure----

\begin{minipage}[t]{.4\linewidth}

\centering

\includegraphics[width=2cm,angle=-30]{graphic}

\caption{Rotated Box}

\end{minipage}%

\end{figure}

produces Figures 67 and 68 which do not have their captions aligned. The [b]
minipage options would not completely solve the problem, as it causes the bottom
lines of the caption to be aligned.

Graphic

Figure 67: Box with a Long Cap-
tion

Graphic

Figure 68: Rotated Box

The alignment of the graphics and the captions can be done separately by creating
two rows of minipages: the first row containing the figures and the second row
containing the captions. For example

\begin{figure}

\centering

%%----start of first figure graphics----

\begin{minipage}[b]{.4\linewidth}

\centering

\includegraphics[width=2cm]{graphic}

\end{minipage}%

\hspace{1cm}%

108

%%----start of second figure graphics----

\begin{minipage}[b]{.4\linewidth}

\centering

\includegraphics[width=2cm,angle=-30]{graphic}

\end{minipage}\\[-10pt]

%%----start of first figure caption----

\begin{minipage}[t]{.4\linewidth}

\caption{Box with a Long Caption}

\end{minipage}%

\hspace{1cm}%

%%----start of second figure caption----

\begin{minipage}[t]{.4\linewidth}

\caption{Rotated Box}

\end{minipage}%

\end{figure}

produces Figures 69 and 70, which have the graphic baselines aligned and the caption
top lines aligned.

Graphic
Graphic

Figure 69: Box with a Long Cap-
tion

Figure 70: Rotated Box

Notes on this example

• The \\ breaks the line after the last figure. The \\ optional argument [-10pt]
moves the captions closer to the graphics by removing 10 points of vertical space
at the linebreak. This length should be changed as the user see fit.

• The graphic minipages have a [b] option to make their reference points be the
baseline of the minipage’s bottom line.

• The caption minipages have a [t] option to make their reference points be the
baseline of the minipage’s top line (to vertically-align the captions’ top lines).

• Any \label commands must be issued in the same minipage as the correspond-
ing \caption command.

30 Placing a Table Beside a Figure

In Section 28 on Page 104, side-by-side figures are constructed by using multiple
\caption commands in a single figure environment. Likewise, side-by-side tables are
created by using multiple \caption commands in a single table environment.

The \captionof commands described in Section 21 on Page 87 make it possible
to put a table beside a figure. For example, the following commands

\begin{figure}[htb]

\begin{minipage}[b]{0.5\linewidth}

\centering

\includegraphics[width=0.8\linewidth]{graphic}

\caption{This is a Figure by a Table}

\label{fig:by:table}

\end{minipage}%

\begin{minipage}[b]{0.5\linewidth}

\centering

\begin{tabular}{|c|c|} \hline

109

Day & Data \\ \hline\hline

Monday & 14.6 \\

Tuesday & 14.3 \\

Wednesday & 14.2 \\

Thursday & 14.5 \\

Friday & 14.9 \\ \hline

\end{tabular}

\captionof{table}{This is a Table by a Figure}

\label{table:by:fig}

\end{minipage}

\end{figure}

use a figure environment to create Figure 71 and Table 23.

Graphic

Figure 71: This is a Figure by a Table

Day Data
Monday 14.6
Tuesday 14.3

Wednesday 14.2
Thursday 14.5

Friday 14.9

Table 23: This is a Table by a Figure

Since LATEX allows figure floats to leapfrog table floats, using

\captionof{table}{...}

in a figure environment may place the table ahead of unprocessed tables. Likewise,
using

\captionof{figure}{...}

in a table environment may place the figure ahead of unprocessed figures. If this
is objectionable, it can be prevented by putting a \FloatBarrier or \clearpage
command before the figure environment (see Section 17.3 on Page 59).

31 Stacked Figures and Subfigures

Side-by-side figures are created in Section 28 on Page 104 by a variety methods, all of
which involve placing objects (graphics, minipages, subfloats) next to each other on a
single line. The same procedure produces stacked graphics when the \\ command is
used to explicitly add a linebreak. The \\ command’s optional argument can specify
additional vertical space, such as \\[20pt].

31.1 Stacked Figures

Section 28 explained how to construct side-by-side figures. This section shows that
adding a linebreak produces multiple rows of figures. For example, the following code

\begin{figure}[htbp]

\centering

%%----start of first figure----

\begin{minipage}[t]{0.25\linewidth}

\centering

\includegraphics[width=\linewidth]{graphic}

\caption{First Stacked Figure}

\label{fig:stacked:first}

\end{minipage}%

110

\hspace{1cm}%

%%----start of second figure----

\begin{minipage}[t]{0.25\linewidth}

\centering

\includegraphics[width=\linewidth]{graphic}

\caption{Second Stacked Figure}

\label{fig:stacked:second}

\end{minipage}\\[20pt]

%%----start of third figure----

\begin{minipage}[t]{0.25\linewidth}

\centering

\includegraphics[width=\linewidth]{graphic}

\caption{Third Stacked Figure}

\label{fig:stacked:third}

\end{minipage}%

\hspace{1cm}%

%%----start of fourth figure----

\begin{minipage}[t]{0.25\linewidth}

\centering

\includegraphics[width=\linewidth]{graphic}

\caption{Fourth Stacked Figure}

\label{fig:stacked:fourth}

\end{minipage}%

\hspace{1cm}%

%%----start of fifth figure----

\begin{minipage}[t]{0.25\linewidth}

\centering

\includegraphics[width=\linewidth]{graphic}

\caption{Fifth Stacked Figure}

\label{fig:stacked:fifth}

\end{minipage}%

\end{figure}

produces Figures 72-76.

Graphic

Figure 72: First
Stacked Figure

Graphic

Figure 73: Second
Stacked Figure

Graphic

Figure 74: Third
Stacked Figure

Graphic

Figure 75: Fourth
Stacked Figure

Graphic

Figure 76: Fifth
Stacked Figure

31.2 Stacked Subfigures

Section 28.3 on Page 106 explained how to construct side-by-side subfigures. This
section shows how adding a linebreak produces rows of subfigures. For example, the
following code

\begin{figure}

\centering

%%----start of first subfigure----

\subfloat[First Subfigure]{

111

\label{fig:stacksub:a} %% label for first subfigure

\includegraphics[width=0.25\linewidth]{graphic}}

\hspace{0.1\linewidth}

%%----start of second subfigure----

\subfloat[Second Subfigure]{

\label{fig:stacksub:b} %% label for second subfigure

\includegraphics[width=0.25\linewidth]{graphic}}\\[20pt]

%%----start of third subfigure----

\subfloat[Third Subfigure]{

\label{fig:stacksub:c} %% label for third subfigure

\includegraphics[width=0.25\linewidth]{graphic}}

\hspace{0.1\linewidth}

%%----start of fourth subfigure----

\subfloat[Fourth Subfigure]{

\label{fig:stacksub:d} %% label for fourth subfigure

\includegraphics[width=0.25\linewidth]{graphic}}

\hspace{0.1\linewidth}

%%----start of fifth subfigure----

\subfloat[Fifth Subfigure]{

\label{fig:stacksub:e} %% label for fifth subfigure

\includegraphics[width=0.25\linewidth]{graphic}}

\caption{Five Subfigures}

\label{fig:stacksub} %% label for entire figure

\end{figure}

produces Figure 77.

Graphic
(a) First Subfigure

Graphic
(b) Second Subfigure

Graphic
(c) Third Subfigure

Graphic
(d) Fourth Subfigure

Graphic
(e) Fifth Subfigure

Figure 77: Five Subfigures

112

32 The subfig package

This section provides an overview of the subfig package. Readers are encouraged to
read Steven Douglas Cochran’s subfig documentation [32] for the full details41.

Section 28.3 provided an example that used the subfig package’s \subfloat com-
mand to create subfigures. The example also used the \label command to define
labels for the figure and the individual subfigures. This labels can be referenced using
the \ref command and the subfig package’s \subref and \subref* commands, with
referencing examples described Table 22.

32.1 The Subfloat Command

The \subfloat command has one mandatory argument and two optional arguments.
The mandatory argument contains the commands (such as \includegraphics) that
generate the subfigure contents. The two optional arguments affect the subfigure’s
caption:

• If no optional arguments are specified then the subfigure has no subcaption

• If one optional argument is specified, its contents provide the subfigure’s sub-
caption and its list-of-figures text.

• If two optional arguments are specified, the first (left) optional argument pro-
vides the subfigure’s list-of-figure text while the second (right) optional argu-
ment provides its subcaption.

More detail on on the \subfloat command options are given in Table 24.

32.2 Customizing subfig with captionsetup Command

Section 20.1 on Page 69 describes how Figure caption can be customized using the op-
tional caption package. The same customization can be applied to subfigure captions
created by the subfig package42.

The \captionsetup command has an optional argument which specifies whether
the customization applies to figures, subfigures, tables, subtables, or some combi-
nation. Table 25 shows the possible \captionsetup optional arguments and their
effects.

41Since the subfig package requires the caption package, some of subfig package’s capability comes
from the caption code. Fortunately, the subfig documentation describes the full subfig capability,
regardless of where the corresponding code resides.

42Since the subfig package automatically includes the caption package, the subfig always has all of
the caption package’s customization capabilities.

Table 24: \subfloat calling arguments

Command List-of-Figures Caption Sub-float caption
\subfloat{body}
\subfloat[]{body} (b) (b)
\subfloat[caption text]{body} (c) caption text (c) caption text
\subfloat[][caption text]{body} (d) caption text
\subfloat[][]{body} (e)
\subfloat[list text][caption text]{body} (f) list text (f) caption text
\subfloat[list text][]{body} (g) list text (g)

113

Table 25: subfig package’s \captionsetup options

Command Description
\captionsetup{〈options〉} options apply to all captions
\captionsetup[figure]{〈options〉} options apply only to figures and subfigure captions
\captionsetup[table]{〈options〉} options apply only to table and subtable captions
\captionsetup[subfloat]{〈options〉} options apply only to all subfloats (subfigures and sub-

tables)
\captionsetup[subfigure]{〈options〉} options apply to subfigures
\captionsetup[subtable]{〈options〉} options apply to subtables

In addition to the \captionsetup command’s options listed on Page 73 - 75, there
are some \captionsetup options which apply only to the subfig package, as shown
in Table 26.

32.3 The ContinuedFloat Command

The subfig package also provides the \ContinuedFloat command which allows sub-
figures to be split between multiple figure environments (and thus multiple pages).
This is useful when

• a figure has too many subfigures to fit on a single page

• or when an author wishes to relate multiple full-page graphics by having them
numbered (17a, 17b, 17c) instead (18, 19, 20)

Examples of the \ContinuedFloat are provided in Section 33.

114

Table 26: subfig captionsetup Options

Keyword Values Default Description
config= <filename> subfig.cfg The filename from which to load subfig configu-

ration.
lofdepth= <integer> 1 If lofdepth=1, then only Figures are included in

the List of Figures. If lofdepth=2, then both
Figures and Subfigures are included in the List
of Figures.

lotdepth= <integer> 1 If lotdepth=1, then only Tables are included in
the List of Tables. If lotdepth=2, then both
Tables and Subtables are included in the List of
Tables.

listofindent= <length> 3.8em Sets the total indentation from the left margin
for List of Floats line for subfloats.

listofnumwidth= <length> 2.5em Sets the width of box for the label number for
List of Floats line for subfloats.

farskip= <length> 10pt Vertical space on the “far side” of the subfloat
(on the side away from the main caption).

nearskip= <length> 0pt Vertical space on the “near side” of the subfloat
(on the side towards the main caption).

captionskip= <length> 4pt Vertical space between the subfloat and its sub-
caption

topadjust= <length> 0pt Extra vertical space added to captionskip when
subcaption is above subfloat.

listofformat= (see

Table 27)

subparens Specifies format of entries in List of Figures
and List of Tables. Must be specified before
\listoffigures

subrefformat= (see

Table 27)

subsimple Specifies format of \subref* output. Format of
\subref* output depends on the subrefformat=
value when the subfloat is formed, regardless of
the subrefformat= value when the \subref*
command is entered.

Table 27: subfig captionsetup Options for listofformat= and subrefformat=

Values Example Description
subsimple b Only output subfigure letter.
subparens (b) Output subfigure letter surrounded by parens.
empty Don’t output anything.
simple 17b Output figure number and subfigure letter.
parens 17(b) Output figure number followed by subfigure

letter surrounded by parens.

115

33 Continued Figures and Subfigures

When two successive figures contain closely-related material, it may be desirable to
label the figures with the same figure number. Since the figure counter contains the
number of the next figure, two figures can be given the same number by decrementing
the figure counter before the figure environment. For example,

\begin{figure}

....

\end{figure}

\addtocounter{figure}{-1}

\begin{figure}

....

\end{figure}

However, the inability to distinguish between these identically-numbered figures
causes confusion.

33.1 Continued Figures

The best way of constructing a continued figure is to use the subfig package to create
multiple Figures, each of which contains a single subfigure. This allows the continued
figures to be referenced individually as “Figure 12(a)” or collectively “Figure 12”.
For example, the following code

\usepackage{subfig,graphicx}
...
\begin{figure}[tbp]

\centering
\subfloat[Subcaption for First Part]{

\label{subfig:continued:first} %% label for first subfigure
\includegraphics[height=6in]{tux}}

\caption{Example of Continued Figure}
\label{fig:continued:first} %% label for first figure

\end{figure}

\begin{figure}[tbp]
\ContinuedFloat
\centering
\subfloat[Subcaption for Second Part]{

\label{subfig:continued:second} %% label for second subfigure
\includegraphics[height=6in]{tux}}

\caption{Example of Continued Figure (cont’d)}
\label{fig:continued:second} %% label for second figure

\end{figure}

Produces Figure 78, which contains Figure 78a on Page 117 and Figure 78b on
Page 118.

33.2 Continued Subfigures

When grouping subfigures together in a figure, there often is not enough room to
place all of the subfigures on a single page. Instead of breaking them into two
differently-numbered Figures, the \ContinuedFloat command allows the two sets of
subfigures to have the same Figure number. For example, the following code

\usepackage{subfig,graphicx}

...

\begin{figure}

\centering

%%----start of first subfigure----

116

(a) Subcaption for First Part

Figure 78: Example of Continued Figure

117

(b) Subcaption for Second Part

Figure 78: Example of Continued Figure (cont’d)

118

Graphic

(a) First Subfigure

Graphic

(b) Second Subfigure

Figure 79: Two Subfigures

\subfloat[First Subfigure]{

\label{fig:contfig:subone} %% label for first subfigure

\includegraphics[width=3cm]{graphic}}

\hspace{1cm}

%%----start of second subfigure----

\subfloat[Second Subfigure]{

\label{fig:contfig:subtwo} %% label for second subfigure

\includegraphics[width=3cm]{graphic}}

\caption{Two Subfigures}

\label{fig:contfig:one} %% label for first part

\end{figure}

\begin{figure}

\ContinuedFloat

\centering

%%----start of third subfigure----

\subfloat[Third Subfigure]{

\label{fig:contfig:subthree} %% label for third subfigure

\includegraphics[width=3cm]{graphic}}

\hspace{1cm}

%%----start of fourth subfigure----

\subfloat[Fourth Subfigure]{

\label{fig:contfig:subfour} %% label for fourth subfigure

\includegraphics[width=3cm]{graphic}}

\caption{Two Additional Subfigures}

\label{fig:contfig:two} %% label for second part

\end{figure}

Creates one float that contains Figures 79a and 79b and another float that contains
Figures 79c and 79d. Note that the \ContinuedFloat command not only gives
the floats the same Figure number, it also ensures that the second float’s subfigure
lettering does not reset to (a).

The two captions have different labels ({fig:contfig:one} and {fig:contfig:two})
which both produce the same \ref value but may produce different \pageref values
since they can be on different pages.

Since four subfigures could easily fit in one float, this example obviously does
not require the \ContinuedFloat command. But this example is meant to show the
procedure for larger collections of subfigures.

Graphic

(c) Third Subfigure

Graphic

(d) Fourth Subfigure

Figure 79: Two Additional Subfigures

119

References

[1] Leslie Lamport, LATEX: A Document Preparation System, Second Edition,
Addison-Wesley, Reading, Massachusetts, 1994, ISBN 0-201-52983-1

[2] Helmut Kopka and Patrick Daly, A Guide to LATEX, Fourth Edition,
Addison-Wesley, Reading, Massachusetts, 2004, ISBN 0-321-17385-6

[3] Frank Mittelbach and Michel Goossens, with Johannes Braams, David Carlisle,
and Chris Rowley, The LATEX Companion, Second Edition, Addison-Wesley
Pearson Education, Boston, Massachusetts, 2004, ISBN 0-201-36299-6

[4] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach, The LATEX Graphics
Companion, Addison-Wesley, Reading, Massachusetts, 1997,
ISBN 0-201-85469-4

[5] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach, The LATEX Web
Companion, Addison-Wesley, Reading, Massachusetts, 1999,
ISBN 0-201-43311-7

[6] Hàn Thé̂ Thành, Sebastian Rahtz, Hans Hagen, Hartmut Henkel, Pawel
Jackowski, The pdfTEX user manual, Available as
CTAN/systems/pdftex/manual/pdftex-l.pdf

[7] D. P. Carlisle, Packages in the ‘graphics’ bundle (Documents the graphics,
graphicx, lscape, color packages), Available as
CTAN/macros/latex/required/graphics/grfguide.ps

[8] Tobias Oetiker, The Not So Short Introduction to LATEX2ε Available at
CTAN/info/lshort/english/lshort.pdf and
CTAN/info/lshort/english/lshort.ps

[9] Harvey Greenberg, A Simplified Introduction to LATEX Available at
CTAN/info/simplified-latex/simplified-intro.ps

[10] David Carlisle, The afterpage package, Available as
CTAN/macros/latex/required/tools/afterpage.dtx

[11] LATEX3 Project Team, The calc package, Available as
CTAN/macros/latex/required/tools/calc.dtx

[12] Axel Sommerfeldt, Typesetting captions with the caption package, Available as
CTAN/macros/latex/contrib/caption/caption.pdf

[13] Peter R. Wilson, The ccaption package, Available as
CTAN/macros/latex/contrib/ccaption/ccaption.pdf

[14] James Darrell McCauley and Jeff Goldberg, The endfloat Package, Available
as CTAN/macros/latex/contrib/endfloat/endfloat.pdf

[15] Rolf Niepraschk The eso-pic package, Available as
CTAN/macros/latex/contrib/eso-pic/eso-pic.pdf

[16] Timothy Van Zandt, Documentation for fancybox.sty, Available as
CTAN/macros/latex/contrib/fancybox/fancybox.doc

120

ftp://ctan.tug.org/tex-archive/systems/pdftex/manual/pdftex-l.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/required/graphics/grfguide.ps
ftp://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf
ftp://ctan.tug.org/tex-archive/info/lshort/english/lshort.ps
ftp://ctan.tug.org/tex-archive/info/simplified-latex/simplified-intro.ps
ftp://ctan.tug.org/tex-archive/macros/latex/required/tools/afterpage.dtx
ftp://ctan.tug.org/tex-archive/macros/latex/required/tools/calc.dtx
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/caption/caption.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/ccaption/ccaption.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/endfloat/endfloat.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/eso-pic/eso-pic.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/fancybox/fancybox.doc

[17] Piet van Oostrum, Page layout in LATEX, Available as
CTAN/macros/latex/contrib/fancyhdr/fancyhdr.pdf

[18] The flafter package, Available as CTAN/macros/latex/unpacked/flafter.sty

[19] Anselm Lingnau, An Improved Environment for Floats, Available as
CTAN/macros/latex/contrib/float/float.dtx

[20] Hendri Adriaens The graphicx-psmin package, Available as
CTAN/macros/latex/contrib/graphicx-psmin/graphicx-psmin.pdf

[21] Sebastian Rahtz and Heiko Oberdiek Hypertext marks in LATEX: a manual for
hyperref, Available as
CTAN/macros/latex/contrib/hyperref/doc/manual.pdf

[22] Heiko Oberdiek The ifpdf package, Available as
CTAN/macros/latex/contrib/oberdiek/ifpdf.sty

[23] David Carlisle, The ifthen package, Available as
CTAN/macros/latex/base/ifthen.dtx

[24] D. P. Carlisle, The lscape package, Available as
CTAN/macros/latex/required/graphics/lscape.dtx

[25] John D. Hobby A User’s manual for MetaPost, AT&T Bell Laboratories
Computing Science Technical Report 162, 1992. Available as
http://cm.bell-labs.com/who/hobby/cstr_162.pdf

[26] Don Hosek, The morefloats package, Available as
CTAN/macros/latex/contrib/misc/morefloats.sty

[27] Rolf Niepraschk The overpic package, Available as
CTAN/macros/latex/contrib/overpic/overpic.sty

[28] Donald Arseneau, The placeins package, Available as
CTAN/macros/latex/contrib/placeins/placeins.sty

[29] Michael C. Grant and David Carlisle, The psfrag system, version 3, Available
as CTAN/macros/latex/contrib/psfrag/pfgguide.pdf

[30] Sebastian Rahtz and Leonor Barroca, The rotating package, Available as
CTAN/macros/latex/contrib/rotating/rotating.dtx

[31] Rolf Niepraschk and Hubert Gäßlein The sidecap package, Available as
CTAN/macros/latex/contrib/sidecap/sidecap.pdf

[32] Steven Douglas Cochran, The subfig package, Available as
CTAN/macros/latex/contrib/subfig/subfig.pdf

[33] Robin Fairbairns The topcapt package, Available as
CTAN/macros/latex/contrib/misc/topcapt.sty

[34] Frank Mittelbach The varioref package, Available as
CTAN/macros/latex/required/tools/varioref.dtx

[35] David Carlisle, The xr package, Available as
CTAN/macros/latex/required/tools/xr.dtx

121

ftp://ctan.tug.org/tex-archive/macros/latex/contrib/fancyhdr/fancyhdr.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/unpacked/flafter.sty
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/float/float.dtx
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/graphicx-psmin/graphicx-psmin.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/hyperref/doc/manual.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/oberdiek/ifpdf.sty
ftp://ctan.tug.org/tex-archive/macros/latex/base/ifthen.dtx
ftp://ctan.tug.org/tex-archive/macros/latex/required/graphics/lscape.dtx
http://cm.bell-labs.com/who/hobby/cstr_162.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/misc/morefloats.sty
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/overpic/overpic.sty
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/placeins/placeins.sty
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/psfrag/pfgguide.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/rotating/rotating.dtx
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/sidecap/sidecap.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/subfig/subfig.pdf
ftp://ctan.tug.org/tex-archive/macros/latex/contrib/misc/topcapt.sty
ftp://ctan.tug.org/tex-archive/macros/latex/required/tools/varioref.dtx
ftp://ctan.tug.org/tex-archive/macros/latex/required/tools/xr.dtx

Index

\abovecaptionskip length, 66
\afterpage command, 60, 97
\Alph counter command, 67
\alph counter command, 67
\Arabic counter command, 67
\arabic counter command, 67

baseline, 10
\baselinestretch command, 68
bb, \includegraphics option, 25
bbfig, 13
\belowcaptionskip length, 66
\bottomfigrule command, 65
\bottomfraction command, 61
bottomnumber float placement counter, 61
BoundingBox, 12
boxed figures, 99
bufsize, 14

calc package, 24
\caption command, 56, 88
caption package, 69, 89

commands, 71, 73–75
\@captype command, 88
\centering command, 32

difference from center environment,
32

\centerline TEX command, 32
\clearpage command, 59, 60
clip, \includegraphics option, 26
color package, 47
\colorbox command, 47
compressed graphics, 42, 43
converting graphics to EPS, 17
converting ps files to eps, 13
CTAN (Comprehensive TEX Archive Net-

work), 3
current baseline, 10

\DeclareGraphicsExtensions command,
29

\DeclareGraphicsRule command, 29, 30,
43, 44

depth, 11
\doublebox command, 101
draft, \includegraphics option, 26

endfloat package, 68, 92
eps BoundingBox, 12

epsf package, 9
\epsfbox command, 9, 32
\epsfig command, 9
eso-pic package, 54

facing-page figures, 98
fancybox package, 99, 101
\fancyfoot command, 52
fancyhdr package, 52, 53
\fancyhead command, 52
fancyheadings package, 52
\fancypagestyle command, 53
\fbox command, 99
\fboxrule length, 47, 101
\fboxsep length, 47, 101
\fcolorbox command, 47
\figcaption command, 88
figure references, incorrect, 56
\figurename command, 67
figures

figure environment, 55
landscape, 91
marginal, 89
non-floating, 87
placed on facing pages, 98
wide, 90

fil unit of length, 64
\fill length, 33
flafter package, 55, 58, 63
float package, 88, 94
float page, 58
\FloatBarrier command, 56
\FloatBarrier command, 59
\floatpagefraction command, 60, 61
\floatsep length, 64
\@fpbot length, 64
\@fpsep length, 64
\@fptop length, 64

ghostscript, 17
ghostview, 17
gif graphics

converting to eps, 17
using in LATEX, 42, 43

GIMP, 20
Graphic Converter, 19
graphics bundle, 9
graphics conversion programs, 17

122

graphics package, 9
graphics.cfg file, 45
GraphicsMagick, 18
\graphicspath command, 39, 40
graphicx package, 9
GSview, 17

header, graphics in, 52
height, 11

\includegraphics option, 25, 26, 33
\hfill command, 33
\hspace command, 33

ifpdf package, 24
ifthen package, 91, 96, 97
\ifthenelse command, 91, 96, 97
ImageMagick, 18
\includegraphics command, 9, 22

boolean options, 26
cropping options, 25
options, 25

internal commands, 64, 88
\intextsep length, 64, 88
Irfanview, 19

jpeg graphics
converting to eps, 17
converting to level 2 eps, 20
using in LATEX, 42, 43

jpeg2ps, 20

keepaspectratio
\includegraphics option, 26

kpsewhich, TEX path-searching program,
45

kvec, 19

\label command, 56
landscape environment, 91, 92
landscape figures, 91
\leavevmode TEX command, 32
level 2 PostScript, 20
\linespread command, 68
lscape package, 91, 92

\makeatletter command, 64, 88
\makeatother command, 64, 88
marginal figures, 89
\marginpar command, 60
minipage

aligning bottoms, 36
aligning tops, 37

vertical alignment, 36
morefloats package, 60, 90

named arguments, 9
natural size, 12
NetPBM, 18
non-eps graphics

converting to eps, 17
converting to level 2 eps, 20
using in LATEX, 42, 43

non-floating figure, 87

origin, \includegraphics option, 25
\Ovalbox command, 101
\ovalbox command, 101
overpic package, 39

\pageref command, 56
PBMPLUS, 18
pict graphics

converting to eps, 17
using in LATEX, 43

placeins package, 56, 59
Please ask a wizard, 14
PostScript

Level 2 Wrappers, 20
\psfig command, 9, 32
psfrag, 45

\ref command, 56
\ref command, strange output, 56
reference point, 10, 11
\resizebox command, 27
\Roman counter command, 67
\roman counter command, 67
\rotatebox command, 28
rotating package, 91, 92, 94
\rotcaption command, 91, 94
rubber length, 33, 64

scale, \includegraphics option, 25
\scalebox command, 27
SCfigure environment, 95
\shadowbox command, 101, 102
\shadowsize length, 102
\shortstack command, 47
sidecap package, 95
sidewaysfigure environment, 91, 92
sidewaystable environment, 92
\special command, 9
\subfloat command, 106
\suppressfloats command, 63

123

\tabcaption command, 88
TeX capacity exceeded, 41
TEX search path, 39
TEXINPUTS (TEX search path), 39
\textfloatsep length, 63, 64
\textfraction command, 61
\thefigure command, 67
\thicklines line width, 102
\thinlines line width, 102
tiff graphics

converting to eps, 17
converting to level 2 eps, 20
using in LATEX, 42, 43

tiff2ps, 21
Too Many Unprocessed Floats, 58, 60
topcapt package, 67
\topfigrule command, 65
\topfraction command, 60, 61
topnumber float placement counter, 61
totalheight, 11

\includegraphics option, 25, 33
totalnumber float placement counter, 61
trim, \includegraphics option, 25

Unable to read an entire line, 14
Unprocessed Floats, Too Many, 58, 60

viewport, \includegraphics option, 25

wide figures, 90
width, 11

\includegraphics option, 24, 25
wizard, Please ask a wizard, 14
WMF2EPS, 19

xv, 20

124

	I Background Information
	1 Introduction
	2 LaTeX Terminology
	3 Encapsulated PostScript
	3.1 Forbidden PostScript Operators
	3.2 The EPS BoundingBox
	3.3 Converting PS files to EPS
	3.4 Fixing Non-standard EPS files

	4 How EPS Files are Used by LaTeX
	4.1 Line Buffer Overflow

	5 PDF Graphics
	5.1 JPEG
	5.2 PNG
	5.3 PDF
	5.4 MetaPost
	5.5 PurifyEPS

	6 Graphics Software
	6.1 Ghostscript
	6.2 Graphics-Conversion Programs
	6.3 Level 2 EPS Wrappers
	6.4 Editing PostScript

	II The LaTeX Graphics Bundle
	7 Graphics Inclusion
	7.1 Graphics Driver
	7.2 Graphics Inclusion for DVIPS-style Documents
	7.3 Graphics Inclusion for pdfLaTeX Documents
	7.4 Documents to be Processed by both LaTeX and pdfLaTeX
	7.5 Specifying Width, Height, or Angle

	8 Rotating and Scaling Objects
	8.1 The scalebox Command
	8.2 The resizebox Commands
	8.3 The rotatebox Command

	9 Advanced Graphics-Inclusion Commands
	9.1 The DeclareGraphicsExtensions Command
	9.2 The DeclareGraphicsRule Command

	III Using Graphics-Inclusion Commands
	10 Horizontal Spacing and Centering
	10.1 Horizontal Centering
	10.2 Horizontal Spacing

	11 Rotation, Scaling, and Alignment
	11.1 Difference Between Height and Totalheight
	11.2 Scaling of Rotated Graphics
	11.3 Alignment of Rotated Graphics
	11.4 Minipage Vertical Alignment

	12 Overlaying Two Imported Graphics
	12.1 Overpic Package

	13 Using Subdirectories
	13.1 TeX Search Path
	13.2 Temporarily Changing the TeX Search Path
	13.3 Graphics Search Path
	13.4 Conserving Pool Space

	14 Compressed and Non-EPS Graphics Files in dvips
	14.1 Compressed EPS Example
	14.2 Non-EPS Graphic Files
	14.3 GIF Example
	14.4 TeX Search Path and dvips

	15 The PSfrag Package
	15.1 PSfrag Example #1
	15.2 PSfrag Example #2
	15.3 LaTeX Text in EPS File
	15.4 Figure and Text Scaling with PSfrag
	15.5 PSfrag and PDFTeX

	16 Including An EPS File Multiple Times
	16.1 Defining a PostScript Command
	16.2 Graphics in Page Header or Footer
	16.3 Watermark Graphics in Background

	IV The Figure Environment
	17 The Figure Environment
	17.1 Creating Floating Figures
	17.2 Figure Placement
	17.3 Clearing Unprocessed Floats
	17.4 Too Many Unprocessed Floats

	18 Customizing Float Placement
	18.1 Float Placement Counters
	18.2 Figure Fractions
	18.3 Suppressing Floats

	19 Customizing the figure Environment
	19.1 Figure Spacing
	19.2 Horizontal Lines Above/Below Figure
	19.3 Caption Vertical Spacing
	19.4 Caption Label
	19.5 Caption Numbering
	19.6 Moving Figures to End of Document
	19.7 Adjusting Caption Linespacing

	20 Customizing Captions with caption package
	20.1 Caption Package Overview
	20.2 Caption Commands
	20.3 Customizing Captions with Caption Command
	20.4 Caption Package Examples
	20.5 Further Customization

	21 Non-Floating Figures
	21.1 Non-floating Figures without the caption package
	21.2 The float Package's [H] Placement Option

	22 Marginal Figures
	23 Wide Figures
	23.1 Wide Figures in One-sided Documents
	23.2 Wide Figures in Two-sided Documents

	24 Landscape Figures
	24.1 Landscape Environment
	24.2 Sidewaysfigure Environment
	24.3 Rotcaption Command

	25 Captions Beside Figures
	25.1 The Sidecap Package
	25.2 Side Captions without Sidecap

	26 Figures on Even or Odd Pages
	26.1 Figures on Facing Pages

	27 Boxed Figures
	27.1 Box Around Graphic
	27.2 Box Around Figure and Caption
	27.3 Customizing fbox Parameters
	27.4 The Fancybox Package

	V Complex Figures
	28 Side-by-Side Graphics
	28.1 Side-by-Side Graphics in a Single Figure
	28.2 Side-by-Side Figures
	28.3 Side-by-Side Subfigures

	29 Separate Minipages for Captions
	30 Placing a Table Beside a Figure
	31 Stacked Figures and Subfigures
	31.1 Stacked Figures
	31.2 Stacked Subfigures

	32 The subfig package
	32.1 The Subfloat Command
	32.2 Customizing subfig with captionsetup Command
	32.3 The ContinuedFloat Command

	33 Continued Figures and Subfigures
	33.1 Continued Figures
	33.2 Continued Subfigures

	 References
	 Index

