pyspark.pandas.get_dummies#
- pyspark.pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)[source]#
Convert categorical variable into dummy/indicator variables, also known as one hot encoding.
- Parameters
- dataarray-like, Series, or DataFrame
- prefixstring, list of strings, or dict of strings, default None
String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes.
- prefix_sepstring, default ‘_’
If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix.
- dummy_nabool, default False
Add a column to indicate NaNs, if False NaNs are ignored.
- columnslist-like, default None
Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.
- sparsebool, default False
Whether the dummy-encoded columns should be be backed by a
SparseArray
(True) or a regular NumPy array (False). In pandas-on-Spark, this value must be “False”.- drop_firstbool, default False
Whether to get k-1 dummies out of k categorical levels by removing the first level.
- dtypedtype, default np.uint8
Data type for new columns. Only a single dtype is allowed.
- Returns
- dummiesDataFrame
See also
Examples
>>> s = ps.Series(list('abca'))
>>> ps.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0
>>> df = ps.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}, ... columns=['A', 'B', 'C'])
>>> ps.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1
>>> ps.get_dummies(ps.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0
>>> ps.get_dummies(ps.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0
>>> ps.get_dummies(ps.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0