/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "main/mtypes.h" #include "glsl_types.h" #include "linker_util.h" #include "util/bitscan.h" #include "util/set.h" #include "ir_uniform.h" /* for gl_uniform_storage */ /* Utility methods shared between the GLSL IR and the NIR */ /* From the OpenGL 4.6 specification, 7.3.1.1 Naming Active Resources: * * "For an active shader storage block member declared as an array of an * aggregate type, an entry will be generated only for the first array * element, regardless of its type. Such block members are referred to as * top-level arrays. If the block member is an aggregate type, the * enumeration rules are then applied recursively." */ bool link_util_should_add_buffer_variable(struct gl_shader_program *prog, struct gl_uniform_storage *uniform, int top_level_array_base_offset, int top_level_array_size_in_bytes, int second_element_offset, int block_index) { /* If the uniform is not a shader storage buffer or is not an array return * true. */ if (!uniform->is_shader_storage || top_level_array_size_in_bytes == 0) return true; int after_top_level_array = top_level_array_base_offset + top_level_array_size_in_bytes; /* Check for a new block, or that we are not dealing with array elements of * a top member array other than the first element. */ if (block_index != uniform->block_index || uniform->offset >= after_top_level_array || uniform->offset < second_element_offset) { return true; } return false; } bool link_util_add_program_resource(struct gl_shader_program *prog, struct set *resource_set, GLenum type, const void *data, uint8_t stages) { assert(data); /* If resource already exists, do not add it again. */ if (_mesa_set_search(resource_set, data)) return true; prog->data->ProgramResourceList = reralloc(prog->data, prog->data->ProgramResourceList, gl_program_resource, prog->data->NumProgramResourceList + 1); if (!prog->data->ProgramResourceList) { linker_error(prog, "Out of memory during linking.\n"); return false; } struct gl_program_resource *res = &prog->data->ProgramResourceList[prog->data->NumProgramResourceList]; res->Type = type; res->Data = data; res->StageReferences = stages; prog->data->NumProgramResourceList++; _mesa_set_add(resource_set, data); return true; } /** * Search through the list of empty blocks to find one that fits the current * uniform. */ int link_util_find_empty_block(struct gl_shader_program *prog, struct gl_uniform_storage *uniform) { const unsigned entries = MAX2(1, uniform->array_elements); foreach_list_typed(struct empty_uniform_block, block, link, &prog->EmptyUniformLocations) { /* Found a block with enough slots to fit the uniform */ if (block->slots == entries) { unsigned start = block->start; exec_node_remove(&block->link); ralloc_free(block); return start; /* Found a block with more slots than needed. It can still be used. */ } else if (block->slots > entries) { unsigned start = block->start; block->start += entries; block->slots -= entries; return start; } } return -1; } void link_util_update_empty_uniform_locations(struct gl_shader_program *prog) { struct empty_uniform_block *current_block = NULL; for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) { /* We found empty space in UniformRemapTable. */ if (prog->UniformRemapTable[i] == NULL) { /* We've found the beginning of a new continous block of empty slots */ if (!current_block || current_block->start + current_block->slots != i) { current_block = rzalloc(prog, struct empty_uniform_block); current_block->start = i; exec_list_push_tail(&prog->EmptyUniformLocations, ¤t_block->link); } /* The current block continues, so we simply increment its slots */ current_block->slots++; } } } void link_util_check_subroutine_resources(struct gl_shader_program *prog) { unsigned mask = prog->data->linked_stages; while (mask) { const int i = u_bit_scan(&mask); struct gl_program *p = prog->_LinkedShaders[i]->Program; if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) { linker_error(prog, "Too many %s shader subroutine uniforms\n", _mesa_shader_stage_to_string(i)); } } } /** * Validate uniform resources used by a program versus the implementation limits */ void link_util_check_uniform_resources(struct gl_context *ctx, struct gl_shader_program *prog) { unsigned total_uniform_blocks = 0; unsigned total_shader_storage_blocks = 0; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh == NULL) continue; if (sh->num_uniform_components > ctx->Const.Program[i].MaxUniformComponents) { if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { linker_warning(prog, "Too many %s shader default uniform block " "components, but the driver will try to optimize " "them out; this is non-portable out-of-spec " "behavior\n", _mesa_shader_stage_to_string(i)); } else { linker_error(prog, "Too many %s shader default uniform block " "components\n", _mesa_shader_stage_to_string(i)); } } if (sh->num_combined_uniform_components > ctx->Const.Program[i].MaxCombinedUniformComponents) { if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { linker_warning(prog, "Too many %s shader uniform components, " "but the driver will try to optimize them out; " "this is non-portable out-of-spec behavior\n", _mesa_shader_stage_to_string(i)); } else { linker_error(prog, "Too many %s shader uniform components\n", _mesa_shader_stage_to_string(i)); } } total_shader_storage_blocks += sh->Program->info.num_ssbos; total_uniform_blocks += sh->Program->info.num_ubos; } if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { linker_error(prog, "Too many combined uniform blocks (%d/%d)\n", total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks); } if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) { linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n", total_shader_storage_blocks, ctx->Const.MaxCombinedShaderStorageBlocks); } for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { if (prog->data->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) { linker_error(prog, "Uniform block %s too big (%d/%d)\n", prog->data->UniformBlocks[i].Name, prog->data->UniformBlocks[i].UniformBufferSize, ctx->Const.MaxUniformBlockSize); } } for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { if (prog->data->ShaderStorageBlocks[i].UniformBufferSize > ctx->Const.MaxShaderStorageBlockSize) { linker_error(prog, "Shader storage block %s too big (%d/%d)\n", prog->data->ShaderStorageBlocks[i].Name, prog->data->ShaderStorageBlocks[i].UniformBufferSize, ctx->Const.MaxShaderStorageBlockSize); } } } void link_util_calculate_subroutine_compat(struct gl_shader_program *prog) { unsigned mask = prog->data->linked_stages; while (mask) { const int i = u_bit_scan(&mask); struct gl_program *p = prog->_LinkedShaders[i]->Program; for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) { if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) continue; struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j]; if (!uni) continue; int count = 0; if (p->sh.NumSubroutineFunctions == 0) { linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name); continue; } for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) { struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f]; for (int k = 0; k < fn->num_compat_types; k++) { if (fn->types[k] == uni->type) { count++; break; } } } uni->num_compatible_subroutines = count; } } } /** * Recursive part of the public mark_array_elements_referenced function. * * The recursion occurs when an entire array-of- is accessed. See the * implementation for more details. * * \param dr List of array_deref_range elements to be * processed. * \param count Number of array_deref_range elements to be * processed. * \param scale Current offset scale. * \param linearized_index Current accumulated linearized array index. */ void _mark_array_elements_referenced(const struct array_deref_range *dr, unsigned count, unsigned scale, unsigned linearized_index, BITSET_WORD *bits) { /* Walk through the list of array dereferences in least- to * most-significant order. Along the way, accumulate the current * linearized offset and the scale factor for each array-of-. */ for (unsigned i = 0; i < count; i++) { if (dr[i].index < dr[i].size) { linearized_index += dr[i].index * scale; scale *= dr[i].size; } else { /* For each element in the current array, update the count and * offset, then recurse to process the remaining arrays. * * There is some inefficency here if the last eBITSET_WORD *bitslement in the * array_deref_range list specifies the entire array. In that case, * the loop will make recursive calls with count == 0. In the call, * all that will happen is the bit will be set. */ for (unsigned j = 0; j < dr[i].size; j++) { _mark_array_elements_referenced(&dr[i + 1], count - (i + 1), scale * dr[i].size, linearized_index + (j * scale), bits); } return; } } BITSET_SET(bits, linearized_index); } /** * Mark a set of array elements as accessed. * * If every \c array_deref_range is for a single index, only a single * element will be marked. If any \c array_deref_range is for an entire * array-of-, then multiple elements will be marked. * * Items in the \c array_deref_range list appear in least- to * most-significant order. This is the \b opposite order the indices * appear in the GLSL shader text. An array access like * * x = y[1][i][3]; * * would appear as * * { { 3, n }, { m, m }, { 1, p } } * * where n, m, and p are the sizes of the arrays-of-arrays. * * The set of marked array elements can later be queried by * \c ::is_linearized_index_referenced. * * \param dr List of array_deref_range elements to be processed. * \param count Number of array_deref_range elements to be processed. */ void link_util_mark_array_elements_referenced(const struct array_deref_range *dr, unsigned count, unsigned array_depth, BITSET_WORD *bits) { if (count != array_depth) return; _mark_array_elements_referenced(dr, count, 1, 0, bits); }