//===-- msan_test.cc ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of MemorySanitizer. // // MemorySanitizer unit tests. //===----------------------------------------------------------------------===// #ifndef MSAN_EXTERNAL_TEST_CONFIG #include "msan_test_config.h" #endif // MSAN_EXTERNAL_TEST_CONFIG #include "sanitizer_common/tests/sanitizer_test_utils.h" #include "sanitizer/allocator_interface.h" #include "sanitizer/msan_interface.h" #if defined(__FreeBSD__) # define _KERNEL // To declare 'shminfo' structure. # include # undef _KERNEL extern "C" { // doesn't declare these functions in _KERNEL mode. void *shmat(int, const void *, int); int shmget(key_t, size_t, int); int shmctl(int, int, struct shmid_ds *); int shmdt(const void *); } #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__NetBSD__) # include # include # include # include # include # include # include #elif defined(__FreeBSD__) # include # include # include # include # include # include # include # define f_namelen f_namemax // FreeBSD names this statfs field so. # define cpu_set_t cpuset_t extern "C" { // FreeBSD's defines mempcpy() to be a macro expanding into // a __builtin___mempcpy_chk() call, but since Msan RTL defines it as an // ordinary function, we can declare it here to complete the tests. void *mempcpy(void *dest, const void *src, size_t n); } #else # include # include # include # include # include # if defined(__linux__) # include # endif #endif #if defined(__i386__) || defined(__x86_64__) # include # define MSAN_HAS_M128 1 #else # define MSAN_HAS_M128 0 #endif #ifdef __AVX2__ # include #endif #if defined(__FreeBSD__) || defined(__NetBSD__) # define FILE_TO_READ "/bin/cat" # define DIR_TO_READ "/bin" # define SUBFILE_TO_READ "cat" # define SYMLINK_TO_READ "/usr/bin/tar" # define SUPERUSER_GROUP "wheel" #else # define FILE_TO_READ "/proc/self/stat" # define DIR_TO_READ "/proc/self" # define SUBFILE_TO_READ "stat" # define SYMLINK_TO_READ "/proc/self/exe" # define SUPERUSER_GROUP "root" #endif static uintptr_t GetPageSize() { return sysconf(_SC_PAGESIZE); } const size_t kMaxPathLength = 4096; typedef unsigned char U1; typedef unsigned short U2; // NOLINT typedef unsigned int U4; typedef unsigned long long U8; // NOLINT typedef signed char S1; typedef signed short S2; // NOLINT typedef signed int S4; typedef signed long long S8; // NOLINT #define NOINLINE __attribute__((noinline)) #define INLINE __attribute__((always_inline)) static bool TrackingOrigins() { S8 x; __msan_set_origin(&x, sizeof(x), 0x1234); U4 origin = __msan_get_origin(&x); __msan_set_origin(&x, sizeof(x), 0); return __msan_origin_is_descendant_or_same(origin, 0x1234); } #define EXPECT_ORIGIN(expected, origin) \ EXPECT_TRUE(__msan_origin_is_descendant_or_same((origin), (expected))) #define EXPECT_UMR(action) \ do { \ __msan_set_expect_umr(1); \ action; \ __msan_set_expect_umr(0); \ } while (0) #define EXPECT_UMR_O(action, origin) \ do { \ __msan_set_expect_umr(1); \ action; \ __msan_set_expect_umr(0); \ if (TrackingOrigins()) EXPECT_ORIGIN(origin, __msan_get_umr_origin()); \ } while (0) #define EXPECT_POISONED(x) ExpectPoisoned(x) template void ExpectPoisoned(const T& t) { EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t))); } #define EXPECT_POISONED_O(x, origin) \ ExpectPoisonedWithOrigin(x, origin) template void ExpectPoisonedWithOrigin(const T& t, unsigned origin) { EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t))); if (TrackingOrigins()) EXPECT_ORIGIN(origin, __msan_get_origin((void *)&t)); } #define EXPECT_NOT_POISONED(x) EXPECT_EQ(true, TestForNotPoisoned((x))) #define EXPECT_NOT_POISONED2(data, size) \ EXPECT_EQ(true, TestForNotPoisoned((data), (size))) bool TestForNotPoisoned(const void *data, size_t size) { return __msan_test_shadow(data, size) == -1; } template bool TestForNotPoisoned(const T& t) { return TestForNotPoisoned((void *)&t, sizeof(t)); } static U8 poisoned_array[100]; template T *GetPoisoned(int i = 0, T val = 0) { T *res = (T*)&poisoned_array[i]; *res = val; __msan_poison(&poisoned_array[i], sizeof(T)); return res; } template T *GetPoisonedO(int i, U4 origin, T val = 0) { T *res = (T*)&poisoned_array[i]; *res = val; __msan_poison(&poisoned_array[i], sizeof(T)); __msan_set_origin(&poisoned_array[i], sizeof(T), origin); return res; } template T Poisoned(T v = 0, T s = (T)(-1)) { __msan_partial_poison(&v, &s, sizeof(T)); return v; } template NOINLINE T ReturnPoisoned() { return *GetPoisoned(); } static volatile int g_one = 1; static volatile int g_zero = 0; static volatile int g_0 = 0; static volatile int g_1 = 1; S4 a_s4[100]; S8 a_s8[100]; // Check that malloc poisons memory. // A lot of tests below depend on this. TEST(MemorySanitizerSanity, PoisonInMalloc) { int *x = (int*)malloc(sizeof(int)); EXPECT_POISONED(*x); free(x); } TEST(MemorySanitizer, NegativeTest1) { S4 *x = GetPoisoned(); if (g_one) *x = 0; EXPECT_NOT_POISONED(*x); } TEST(MemorySanitizer, PositiveTest1) { // Load to store. EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); // S->S conversions. EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); // ZExt EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); // Unary ops. EXPECT_POISONED(- *GetPoisoned()); EXPECT_UMR(a_s4[g_zero] = 100 / *GetPoisoned(0, 1)); a_s4[g_zero] = 1 - *GetPoisoned(); a_s4[g_zero] = 1 + *GetPoisoned(); } TEST(MemorySanitizer, Phi1) { S4 c; if (g_one) { c = *GetPoisoned(); } else { break_optimization(0); c = 0; } EXPECT_POISONED(c); } TEST(MemorySanitizer, Phi2) { S4 i = *GetPoisoned(); S4 n = g_one; EXPECT_UMR(for (; i < g_one; i++);); EXPECT_POISONED(i); } NOINLINE void Arg1ExpectUMR(S4 a1) { EXPECT_POISONED(a1); } NOINLINE void Arg2ExpectUMR(S4 a1, S4 a2) { EXPECT_POISONED(a2); } NOINLINE void Arg3ExpectUMR(S1 a1, S4 a2, S8 a3) { EXPECT_POISONED(a3); } TEST(MemorySanitizer, ArgTest) { Arg1ExpectUMR(*GetPoisoned()); Arg2ExpectUMR(0, *GetPoisoned()); Arg3ExpectUMR(0, 1, *GetPoisoned()); } TEST(MemorySanitizer, CallAndRet) { ReturnPoisoned(); ReturnPoisoned(); ReturnPoisoned(); ReturnPoisoned(); EXPECT_POISONED(ReturnPoisoned()); EXPECT_POISONED(ReturnPoisoned()); EXPECT_POISONED(ReturnPoisoned()); EXPECT_POISONED(ReturnPoisoned()); } // malloc() in the following test may be optimized to produce a compile-time // undef value. Check that we trap on the volatile assignment anyway. TEST(MemorySanitizer, DISABLED_MallocNoIdent) { S4 *x = (int*)malloc(sizeof(S4)); EXPECT_POISONED(*x); free(x); } TEST(MemorySanitizer, Malloc) { S4 *x = (int*)Ident(malloc(sizeof(S4))); EXPECT_POISONED(*x); free(x); } TEST(MemorySanitizer, Realloc) { S4 *x = (int*)Ident(realloc(0, sizeof(S4))); EXPECT_POISONED(x[0]); x[0] = 1; x = (int*)Ident(realloc(x, 2 * sizeof(S4))); EXPECT_NOT_POISONED(x[0]); // Ok, was inited before. EXPECT_POISONED(x[1]); x = (int*)Ident(realloc(x, 3 * sizeof(S4))); EXPECT_NOT_POISONED(x[0]); // Ok, was inited before. EXPECT_POISONED(x[2]); EXPECT_POISONED(x[1]); x[2] = 1; // Init this here. Check that after realloc it is poisoned again. x = (int*)Ident(realloc(x, 2 * sizeof(S4))); EXPECT_NOT_POISONED(x[0]); // Ok, was inited before. EXPECT_POISONED(x[1]); x = (int*)Ident(realloc(x, 3 * sizeof(S4))); EXPECT_POISONED(x[1]); EXPECT_POISONED(x[2]); free(x); } TEST(MemorySanitizer, Calloc) { S4 *x = (int*)Ident(calloc(1, sizeof(S4))); EXPECT_NOT_POISONED(*x); // Should not be poisoned. EXPECT_EQ(0, *x); free(x); } TEST(MemorySanitizer, CallocReturnsZeroMem) { size_t sizes[] = {16, 1000, 10000, 100000, 2100000}; for (size_t s = 0; s < sizeof(sizes)/sizeof(sizes[0]); s++) { size_t size = sizes[s]; for (size_t iter = 0; iter < 5; iter++) { char *x = Ident((char*)calloc(1, size)); EXPECT_EQ(x[0], 0); EXPECT_EQ(x[size - 1], 0); EXPECT_EQ(x[size / 2], 0); EXPECT_EQ(x[size / 3], 0); EXPECT_EQ(x[size / 4], 0); memset(x, 0x42, size); free(Ident(x)); } } } TEST(MemorySanitizer, AndOr) { U4 *p = GetPoisoned(); // We poison two bytes in the midle of a 4-byte word to make the test // correct regardless of endianness. ((U1*)p)[1] = 0; ((U1*)p)[2] = 0xff; EXPECT_NOT_POISONED(*p & 0x00ffff00); EXPECT_NOT_POISONED(*p & 0x00ff0000); EXPECT_NOT_POISONED(*p & 0x0000ff00); EXPECT_POISONED(*p & 0xff000000); EXPECT_POISONED(*p & 0x000000ff); EXPECT_POISONED(*p & 0x0000ffff); EXPECT_POISONED(*p & 0xffff0000); EXPECT_NOT_POISONED(*p | 0xff0000ff); EXPECT_NOT_POISONED(*p | 0xff00ffff); EXPECT_NOT_POISONED(*p | 0xffff00ff); EXPECT_POISONED(*p | 0xff000000); EXPECT_POISONED(*p | 0x000000ff); EXPECT_POISONED(*p | 0x0000ffff); EXPECT_POISONED(*p | 0xffff0000); EXPECT_POISONED(*GetPoisoned() & *GetPoisoned()); } template static bool applyNot(T value, T shadow) { __msan_partial_poison(&value, &shadow, sizeof(T)); return !value; } TEST(MemorySanitizer, Not) { EXPECT_NOT_POISONED(applyNot(0x0, 0x0)); EXPECT_NOT_POISONED(applyNot(0xFFFFFFFF, 0x0)); EXPECT_POISONED(applyNot(0xFFFFFFFF, 0xFFFFFFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x0FFFFFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x00FFFFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x0000FFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x00000000)); EXPECT_POISONED(applyNot(0xFF000000, 0xFF000000)); EXPECT_NOT_POISONED(applyNot(0xFF800000, 0xFF000000)); EXPECT_POISONED(applyNot(0x00008000, 0x00008000)); EXPECT_NOT_POISONED(applyNot(0x0, 0x0)); EXPECT_NOT_POISONED(applyNot(0xFF, 0xFE)); EXPECT_NOT_POISONED(applyNot(0xFF, 0x0)); EXPECT_POISONED(applyNot(0xFF, 0xFF)); EXPECT_POISONED(applyNot((void*)0xFFFFFF, (void*)(-1))); EXPECT_NOT_POISONED(applyNot((void*)0xFFFFFF, (void*)(-2))); } TEST(MemorySanitizer, Shift) { U4 *up = GetPoisoned(); ((U1*)up)[0] = 0; ((U1*)up)[3] = 0xff; EXPECT_NOT_POISONED(*up >> 30); EXPECT_NOT_POISONED(*up >> 24); EXPECT_POISONED(*up >> 23); EXPECT_POISONED(*up >> 10); EXPECT_NOT_POISONED(*up << 30); EXPECT_NOT_POISONED(*up << 24); EXPECT_POISONED(*up << 23); EXPECT_POISONED(*up << 10); S4 *sp = (S4*)up; EXPECT_NOT_POISONED(*sp >> 30); EXPECT_NOT_POISONED(*sp >> 24); EXPECT_POISONED(*sp >> 23); EXPECT_POISONED(*sp >> 10); sp = GetPoisoned(); ((S1*)sp)[1] = 0; ((S1*)sp)[2] = 0; EXPECT_POISONED(*sp >> 31); EXPECT_POISONED(100 >> *GetPoisoned()); EXPECT_POISONED(100U >> *GetPoisoned()); } NOINLINE static int GetPoisonedZero() { int *zero = new int; *zero = 0; __msan_poison(zero, sizeof(*zero)); int res = *zero; delete zero; return res; } TEST(MemorySanitizer, LoadFromDirtyAddress) { int *a = new int; *a = 0; EXPECT_UMR(break_optimization((void*)(U8)a[GetPoisonedZero()])); delete a; } TEST(MemorySanitizer, StoreToDirtyAddress) { int *a = new int; EXPECT_UMR(a[GetPoisonedZero()] = 0); break_optimization(a); delete a; } NOINLINE void StackTestFunc() { S4 p4; S4 ok4 = 1; S2 p2; S2 ok2 = 1; S1 p1; S1 ok1 = 1; break_optimization(&p4); break_optimization(&ok4); break_optimization(&p2); break_optimization(&ok2); break_optimization(&p1); break_optimization(&ok1); EXPECT_POISONED(p4); EXPECT_POISONED(p2); EXPECT_POISONED(p1); EXPECT_NOT_POISONED(ok1); EXPECT_NOT_POISONED(ok2); EXPECT_NOT_POISONED(ok4); } TEST(MemorySanitizer, StackTest) { StackTestFunc(); } NOINLINE void StackStressFunc() { int foo[10000]; break_optimization(foo); } TEST(MemorySanitizer, DISABLED_StackStressTest) { for (int i = 0; i < 1000000; i++) StackStressFunc(); } template void TestFloatingPoint() { static volatile T v; static T g[100]; break_optimization(&g); T *x = GetPoisoned(); T *y = GetPoisoned(1); EXPECT_POISONED(*x); EXPECT_POISONED((long long)*x); EXPECT_POISONED((int)*x); g[0] = *x; g[1] = *x + *y; g[2] = *x - *y; g[3] = *x * *y; } TEST(MemorySanitizer, FloatingPointTest) { TestFloatingPoint(); TestFloatingPoint(); } TEST(MemorySanitizer, DynMem) { S4 x = 0; S4 *y = GetPoisoned(); memcpy(y, &x, g_one * sizeof(S4)); EXPECT_NOT_POISONED(*y); } static char *DynRetTestStr; TEST(MemorySanitizer, DynRet) { ReturnPoisoned(); EXPECT_NOT_POISONED(atoi("0")); } TEST(MemorySanitizer, DynRet1) { ReturnPoisoned(); } struct LargeStruct { S4 x[10]; }; NOINLINE LargeStruct LargeRetTest() { LargeStruct res; res.x[0] = *GetPoisoned(); res.x[1] = *GetPoisoned(); res.x[2] = *GetPoisoned(); res.x[3] = *GetPoisoned(); res.x[4] = *GetPoisoned(); res.x[5] = *GetPoisoned(); res.x[6] = *GetPoisoned(); res.x[7] = *GetPoisoned(); res.x[8] = *GetPoisoned(); res.x[9] = *GetPoisoned(); return res; } TEST(MemorySanitizer, strcmp) { char s1[10]; char s2[10]; strncpy(s1, "foo", 10); s2[0] = 'f'; s2[1] = 'n'; EXPECT_GT(strcmp(s1, s2), 0); s2[1] = 'o'; int res; EXPECT_UMR(res = strcmp(s1, s2)); EXPECT_NOT_POISONED(res); EXPECT_EQ(strncmp(s1, s2, 1), 0); } TEST(MemorySanitizer, LargeRet) { LargeStruct a = LargeRetTest(); EXPECT_POISONED(a.x[0]); EXPECT_POISONED(a.x[9]); } TEST(MemorySanitizer, strerror) { char *buf = strerror(EINVAL); EXPECT_NOT_POISONED(strlen(buf)); buf = strerror(123456); EXPECT_NOT_POISONED(strlen(buf)); } TEST(MemorySanitizer, strerror_r) { errno = 0; char buf[1000]; char *res = (char*) (size_t) strerror_r(EINVAL, buf, sizeof(buf)); ASSERT_EQ(0, errno); if (!res) res = buf; // POSIX version success. EXPECT_NOT_POISONED(strlen(res)); } TEST(MemorySanitizer, fread) { char *x = new char[32]; FILE *f = fopen(FILE_TO_READ, "r"); ASSERT_TRUE(f != NULL); fread(x, 1, 32, f); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[16]); EXPECT_NOT_POISONED(x[31]); fclose(f); delete[] x; } TEST(MemorySanitizer, read) { char *x = new char[32]; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = read(fd, x, 32); ASSERT_EQ(sz, 32); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[16]); EXPECT_NOT_POISONED(x[31]); close(fd); delete[] x; } TEST(MemorySanitizer, pread) { char *x = new char[32]; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = pread(fd, x, 32, 0); ASSERT_EQ(sz, 32); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[16]); EXPECT_NOT_POISONED(x[31]); close(fd); delete[] x; } TEST(MemorySanitizer, readv) { char buf[2011]; struct iovec iov[2]; iov[0].iov_base = buf + 1; iov[0].iov_len = 5; iov[1].iov_base = buf + 10; iov[1].iov_len = 2000; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = readv(fd, iov, 2); ASSERT_GE(sz, 0); ASSERT_LE(sz, 5 + 2000); ASSERT_GT((size_t)sz, iov[0].iov_len); EXPECT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[1]); EXPECT_NOT_POISONED(buf[5]); EXPECT_POISONED(buf[6]); EXPECT_POISONED(buf[9]); EXPECT_NOT_POISONED(buf[10]); EXPECT_NOT_POISONED(buf[10 + (sz - 1) - 5]); EXPECT_POISONED(buf[11 + (sz - 1) - 5]); close(fd); } TEST(MemorySanitizer, preadv) { char buf[2011]; struct iovec iov[2]; iov[0].iov_base = buf + 1; iov[0].iov_len = 5; iov[1].iov_base = buf + 10; iov[1].iov_len = 2000; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = preadv(fd, iov, 2, 3); ASSERT_GE(sz, 0); ASSERT_LE(sz, 5 + 2000); ASSERT_GT((size_t)sz, iov[0].iov_len); EXPECT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[1]); EXPECT_NOT_POISONED(buf[5]); EXPECT_POISONED(buf[6]); EXPECT_POISONED(buf[9]); EXPECT_NOT_POISONED(buf[10]); EXPECT_NOT_POISONED(buf[10 + (sz - 1) - 5]); EXPECT_POISONED(buf[11 + (sz - 1) - 5]); close(fd); } // FIXME: fails now. TEST(MemorySanitizer, DISABLED_ioctl) { struct winsize ws; EXPECT_EQ(ioctl(2, TIOCGWINSZ, &ws), 0); EXPECT_NOT_POISONED(ws.ws_col); } TEST(MemorySanitizer, readlink) { char *x = new char[1000]; readlink(SYMLINK_TO_READ, x, 1000); EXPECT_NOT_POISONED(x[0]); delete [] x; } TEST(MemorySanitizer, readlinkat) { char *x = new char[1000]; readlinkat(AT_FDCWD, SYMLINK_TO_READ, x, 1000); EXPECT_NOT_POISONED(x[0]); delete[] x; } TEST(MemorySanitizer, stat) { struct stat* st = new struct stat; int res = stat(FILE_TO_READ, st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st->st_dev); EXPECT_NOT_POISONED(st->st_mode); EXPECT_NOT_POISONED(st->st_size); } TEST(MemorySanitizer, fstatat) { struct stat* st = new struct stat; int dirfd = open(DIR_TO_READ, O_RDONLY); ASSERT_GT(dirfd, 0); int res = fstatat(dirfd, SUBFILE_TO_READ, st, 0); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st->st_dev); EXPECT_NOT_POISONED(st->st_mode); EXPECT_NOT_POISONED(st->st_size); close(dirfd); } #if !defined(__NetBSD__) TEST(MemorySanitizer, statfs) { struct statfs st; int res = statfs("/", &st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st.f_type); EXPECT_NOT_POISONED(st.f_bfree); EXPECT_NOT_POISONED(st.f_namelen); } #endif TEST(MemorySanitizer, statvfs) { struct statvfs st; int res = statvfs("/", &st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st.f_bsize); EXPECT_NOT_POISONED(st.f_blocks); EXPECT_NOT_POISONED(st.f_bfree); EXPECT_NOT_POISONED(st.f_namemax); } TEST(MemorySanitizer, fstatvfs) { struct statvfs st; int fd = open("/", O_RDONLY | O_DIRECTORY); int res = fstatvfs(fd, &st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st.f_bsize); EXPECT_NOT_POISONED(st.f_blocks); EXPECT_NOT_POISONED(st.f_bfree); EXPECT_NOT_POISONED(st.f_namemax); close(fd); } TEST(MemorySanitizer, pipe) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pipefd[0]); EXPECT_NOT_POISONED(pipefd[1]); close(pipefd[0]); close(pipefd[1]); } TEST(MemorySanitizer, pipe2) { int* pipefd = new int[2]; int res = pipe2(pipefd, O_NONBLOCK); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pipefd[0]); EXPECT_NOT_POISONED(pipefd[1]); close(pipefd[0]); close(pipefd[1]); } TEST(MemorySanitizer, socketpair) { int sv[2]; int res = socketpair(AF_UNIX, SOCK_STREAM, 0, sv); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(sv[0]); EXPECT_NOT_POISONED(sv[1]); close(sv[0]); close(sv[1]); } TEST(MemorySanitizer, poll) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); char data = 42; res = write(pipefd[1], &data, 1); ASSERT_EQ(1, res); pollfd fds[2]; fds[0].fd = pipefd[0]; fds[0].events = POLLIN; fds[1].fd = pipefd[1]; fds[1].events = POLLIN; res = poll(fds, 2, 500); ASSERT_EQ(1, res); EXPECT_NOT_POISONED(fds[0].revents); EXPECT_NOT_POISONED(fds[1].revents); close(pipefd[0]); close(pipefd[1]); } #if !defined (__FreeBSD__) && !defined (__NetBSD__) TEST(MemorySanitizer, ppoll) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); char data = 42; res = write(pipefd[1], &data, 1); ASSERT_EQ(1, res); pollfd fds[2]; fds[0].fd = pipefd[0]; fds[0].events = POLLIN; fds[1].fd = pipefd[1]; fds[1].events = POLLIN; sigset_t ss; sigemptyset(&ss); res = ppoll(fds, 2, NULL, &ss); ASSERT_EQ(1, res); EXPECT_NOT_POISONED(fds[0].revents); EXPECT_NOT_POISONED(fds[1].revents); close(pipefd[0]); close(pipefd[1]); } #endif TEST(MemorySanitizer, poll_positive) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); pollfd fds[2]; fds[0].fd = pipefd[0]; fds[0].events = POLLIN; // fds[1].fd uninitialized fds[1].events = POLLIN; EXPECT_UMR(poll(fds, 2, 0)); close(pipefd[0]); close(pipefd[1]); } TEST(MemorySanitizer, bind_getsockname) { int sock = socket(AF_UNIX, SOCK_STREAM, 0); struct sockaddr_in sai; memset(&sai, 0, sizeof(sai)); sai.sin_family = AF_UNIX; int res = bind(sock, (struct sockaddr *)&sai, sizeof(sai)); ASSERT_EQ(0, res); char buf[200]; socklen_t addrlen; EXPECT_UMR(getsockname(sock, (struct sockaddr *)&buf, &addrlen)); addrlen = sizeof(buf); res = getsockname(sock, (struct sockaddr *)&buf, &addrlen); EXPECT_NOT_POISONED(addrlen); EXPECT_NOT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[addrlen - 1]); EXPECT_POISONED(buf[addrlen]); close(sock); } class SocketAddr { public: virtual ~SocketAddr() = default; virtual struct sockaddr *ptr() = 0; virtual size_t size() const = 0; template static std::unique_ptr Create(int family, Args... args); }; class SocketAddr4 : public SocketAddr { public: SocketAddr4() { EXPECT_POISONED(sai_); } explicit SocketAddr4(uint16_t port) { memset(&sai_, 0, sizeof(sai_)); sai_.sin_family = AF_INET; sai_.sin_port = port; sai_.sin_addr.s_addr = htonl(INADDR_LOOPBACK); } sockaddr *ptr() override { return reinterpret_cast(&sai_); } size_t size() const override { return sizeof(sai_); } private: sockaddr_in sai_; }; class SocketAddr6 : public SocketAddr { public: SocketAddr6() { EXPECT_POISONED(sai_); } explicit SocketAddr6(uint16_t port) { memset(&sai_, 0, sizeof(sai_)); sai_.sin6_family = AF_INET6; sai_.sin6_port = port; sai_.sin6_addr = in6addr_loopback; } sockaddr *ptr() override { return reinterpret_cast(&sai_); } size_t size() const override { return sizeof(sai_); } private: sockaddr_in6 sai_; }; template std::unique_ptr SocketAddr::Create(int family, Args... args) { if (family == AF_INET) return std::unique_ptr(new SocketAddr4(args...)); return std::unique_ptr(new SocketAddr6(args...)); } class MemorySanitizerIpTest : public ::testing::TestWithParam { public: void SetUp() override { ASSERT_TRUE(GetParam() == AF_INET || GetParam() == AF_INET6); } template std::unique_ptr CreateSockAddr(Args... args) const { return SocketAddr::Create(GetParam(), args...); } int CreateSocket(int socket_type) const { return socket(GetParam(), socket_type, 0); } }; std::vector GetAvailableIpSocketFamilies() { std::vector result; for (int i : {AF_INET, AF_INET6}) { int s = socket(i, SOCK_STREAM, 0); if (s > 0) { auto sai = SocketAddr::Create(i, 0); if (bind(s, sai->ptr(), sai->size()) == 0) result.push_back(i); close(s); } } return result; } INSTANTIATE_TEST_CASE_P(IpTests, MemorySanitizerIpTest, ::testing::ValuesIn(GetAvailableIpSocketFamilies())); TEST_P(MemorySanitizerIpTest, accept) { int listen_socket = CreateSocket(SOCK_STREAM); ASSERT_LT(0, listen_socket); auto sai = CreateSockAddr(0); int res = bind(listen_socket, sai->ptr(), sai->size()); ASSERT_EQ(0, res); res = listen(listen_socket, 1); ASSERT_EQ(0, res); socklen_t sz = sai->size(); res = getsockname(listen_socket, sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(sai->size(), sz); int connect_socket = CreateSocket(SOCK_STREAM); ASSERT_LT(0, connect_socket); res = fcntl(connect_socket, F_SETFL, O_NONBLOCK); ASSERT_EQ(0, res); res = connect(connect_socket, sai->ptr(), sai->size()); // On FreeBSD this connection completes immediately. if (res != 0) { ASSERT_EQ(-1, res); ASSERT_EQ(EINPROGRESS, errno); } __msan_poison(sai->ptr(), sai->size()); int new_sock = accept(listen_socket, sai->ptr(), &sz); ASSERT_LT(0, new_sock); ASSERT_EQ(sai->size(), sz); EXPECT_NOT_POISONED2(sai->ptr(), sai->size()); __msan_poison(sai->ptr(), sai->size()); res = getpeername(new_sock, sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(sai->size(), sz); EXPECT_NOT_POISONED2(sai->ptr(), sai->size()); close(new_sock); close(connect_socket); close(listen_socket); } TEST_P(MemorySanitizerIpTest, recvmsg) { int server_socket = CreateSocket(SOCK_DGRAM); ASSERT_LT(0, server_socket); auto sai = CreateSockAddr(0); int res = bind(server_socket, sai->ptr(), sai->size()); ASSERT_EQ(0, res); socklen_t sz = sai->size(); res = getsockname(server_socket, sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(sai->size(), sz); int client_socket = CreateSocket(SOCK_DGRAM); ASSERT_LT(0, client_socket); auto client_sai = CreateSockAddr(0); res = bind(client_socket, client_sai->ptr(), client_sai->size()); ASSERT_EQ(0, res); sz = client_sai->size(); res = getsockname(client_socket, client_sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(client_sai->size(), sz); const char *s = "message text"; struct iovec iov; iov.iov_base = (void *)s; iov.iov_len = strlen(s) + 1; struct msghdr msg; memset(&msg, 0, sizeof(msg)); msg.msg_name = sai->ptr(); msg.msg_namelen = sai->size(); msg.msg_iov = &iov; msg.msg_iovlen = 1; res = sendmsg(client_socket, &msg, 0); ASSERT_LT(0, res); char buf[1000]; struct iovec recv_iov; recv_iov.iov_base = (void *)&buf; recv_iov.iov_len = sizeof(buf); auto recv_sai = CreateSockAddr(); struct msghdr recv_msg; memset(&recv_msg, 0, sizeof(recv_msg)); recv_msg.msg_name = recv_sai->ptr(); recv_msg.msg_namelen = recv_sai->size(); recv_msg.msg_iov = &recv_iov; recv_msg.msg_iovlen = 1; res = recvmsg(server_socket, &recv_msg, 0); ASSERT_LT(0, res); ASSERT_EQ(recv_sai->size(), recv_msg.msg_namelen); EXPECT_NOT_POISONED2(recv_sai->ptr(), recv_sai->size()); EXPECT_STREQ(s, buf); close(server_socket); close(client_socket); } #define EXPECT_HOSTENT_NOT_POISONED(he) \ do { \ EXPECT_NOT_POISONED(*(he)); \ ASSERT_NE((void *)0, (he)->h_name); \ ASSERT_NE((void *)0, (he)->h_aliases); \ ASSERT_NE((void *)0, (he)->h_addr_list); \ EXPECT_NOT_POISONED(strlen((he)->h_name)); \ char **p = (he)->h_aliases; \ while (*p) { \ EXPECT_NOT_POISONED(strlen(*p)); \ ++p; \ } \ char **q = (he)->h_addr_list; \ while (*q) { \ EXPECT_NOT_POISONED(*q[0]); \ ++q; \ } \ EXPECT_NOT_POISONED(*q); \ } while (0) TEST(MemorySanitizer, gethostent) { struct hostent *he = gethostent(); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } #ifndef MSAN_TEST_DISABLE_GETHOSTBYNAME TEST(MemorySanitizer, gethostbyname) { struct hostent *he = gethostbyname("localhost"); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } #endif // MSAN_TEST_DISABLE_GETHOSTBYNAME TEST(MemorySanitizer, getaddrinfo) { struct addrinfo *ai; struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET; int res = getaddrinfo("localhost", NULL, &hints, &ai); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(*ai); ASSERT_EQ(sizeof(sockaddr_in), ai->ai_addrlen); EXPECT_NOT_POISONED(*(sockaddr_in *)ai->ai_addr); } TEST(MemorySanitizer, getnameinfo) { struct sockaddr_in sai; memset(&sai, 0, sizeof(sai)); sai.sin_family = AF_INET; sai.sin_port = 80; sai.sin_addr.s_addr = htonl(INADDR_LOOPBACK); char host[500]; char serv[500]; int res = getnameinfo((struct sockaddr *)&sai, sizeof(sai), host, sizeof(host), serv, sizeof(serv), 0); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(host[0]); EXPECT_POISONED(host[sizeof(host) - 1]); ASSERT_NE(0U, strlen(host)); EXPECT_NOT_POISONED(serv[0]); EXPECT_POISONED(serv[sizeof(serv) - 1]); ASSERT_NE(0U, strlen(serv)); } TEST(MemorySanitizer, gethostbyname2) { struct hostent *he = gethostbyname2("localhost", AF_INET); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } TEST(MemorySanitizer, gethostbyaddr) { in_addr_t addr = inet_addr("127.0.0.1"); EXPECT_NOT_POISONED(addr); struct hostent *he = gethostbyaddr(&addr, sizeof(addr), AF_INET); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } #if !defined(__NetBSD__) TEST(MemorySanitizer, gethostent_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostent_r(&he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } #endif #if !defined(__NetBSD__) TEST(MemorySanitizer, gethostbyname_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostbyname_r("localhost", &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } #endif #if !defined(__NetBSD__) TEST(MemorySanitizer, gethostbyname_r_bad_host_name) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostbyname_r("bad-host-name", &he, buf, sizeof(buf), &result, &err); ASSERT_EQ((struct hostent *)0, result); EXPECT_NOT_POISONED(err); } #endif #if !defined(__NetBSD__) TEST(MemorySanitizer, gethostbyname_r_erange) { char buf[5]; struct hostent he; struct hostent *result; int err; gethostbyname_r("localhost", &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(ERANGE, errno); EXPECT_NOT_POISONED(err); } #endif #if !defined(__NetBSD__) TEST(MemorySanitizer, gethostbyname2_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostbyname2_r("localhost", AF_INET, &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } #endif #if !defined(__NetBSD__) TEST(MemorySanitizer, gethostbyaddr_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; in_addr_t addr = inet_addr("127.0.0.1"); EXPECT_NOT_POISONED(addr); int res = gethostbyaddr_r(&addr, sizeof(addr), AF_INET, &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } #endif TEST(MemorySanitizer, getsockopt) { int sock = socket(AF_UNIX, SOCK_STREAM, 0); struct linger l[2]; socklen_t sz = sizeof(l[0]); int res = getsockopt(sock, SOL_SOCKET, SO_LINGER, &l[0], &sz); ASSERT_EQ(0, res); ASSERT_EQ(sizeof(l[0]), sz); EXPECT_NOT_POISONED(l[0]); EXPECT_POISONED(*(char *)(l + 1)); } TEST(MemorySanitizer, getcwd) { char path[PATH_MAX + 1]; char* res = getcwd(path, sizeof(path)); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(path[0]); } TEST(MemorySanitizer, getcwd_gnu) { char* res = getcwd(NULL, 0); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, get_current_dir_name) { char* res = get_current_dir_name(); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } #endif TEST(MemorySanitizer, shmctl) { int id = shmget(IPC_PRIVATE, 4096, 0644 | IPC_CREAT); ASSERT_GT(id, -1); struct shmid_ds ds; int res = shmctl(id, IPC_STAT, &ds); ASSERT_GT(res, -1); EXPECT_NOT_POISONED(ds); #if !defined(__FreeBSD__) && !defined(__NetBSD__) struct shminfo si; res = shmctl(id, IPC_INFO, (struct shmid_ds *)&si); ASSERT_GT(res, -1); EXPECT_NOT_POISONED(si); struct shm_info s_i; res = shmctl(id, SHM_INFO, (struct shmid_ds *)&s_i); ASSERT_GT(res, -1); EXPECT_NOT_POISONED(s_i); #endif res = shmctl(id, IPC_RMID, 0); ASSERT_GT(res, -1); } TEST(MemorySanitizer, shmat) { const int kShmSize = 4096; void *mapping_start = mmap(NULL, kShmSize + SHMLBA, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ASSERT_NE(MAP_FAILED, mapping_start); void *p = (void *)(((unsigned long)mapping_start + SHMLBA - 1) / SHMLBA * SHMLBA); // p is now SHMLBA-aligned; ((char *)p)[10] = *GetPoisoned(); ((char *)p)[kShmSize - 1] = *GetPoisoned(); int res = munmap(mapping_start, kShmSize + SHMLBA); ASSERT_EQ(0, res); int id = shmget(IPC_PRIVATE, kShmSize, 0644 | IPC_CREAT); ASSERT_GT(id, -1); void *q = shmat(id, p, 0); ASSERT_EQ(p, q); EXPECT_NOT_POISONED(((char *)q)[0]); EXPECT_NOT_POISONED(((char *)q)[10]); EXPECT_NOT_POISONED(((char *)q)[kShmSize - 1]); res = shmdt(q); ASSERT_EQ(0, res); res = shmctl(id, IPC_RMID, 0); ASSERT_GT(res, -1); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, random_r) { int32_t x; char z[64]; memset(z, 0, sizeof(z)); struct random_data buf; memset(&buf, 0, sizeof(buf)); int res = initstate_r(0, z, sizeof(z), &buf); ASSERT_EQ(0, res); res = random_r(&buf, &x); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(x); } #endif TEST(MemorySanitizer, confstr) { char buf[3]; size_t res = confstr(_CS_PATH, buf, sizeof(buf)); ASSERT_GT(res, sizeof(buf)); EXPECT_NOT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[sizeof(buf) - 1]); char buf2[1000]; res = confstr(_CS_PATH, buf2, sizeof(buf2)); ASSERT_LT(res, sizeof(buf2)); EXPECT_NOT_POISONED(buf2[0]); EXPECT_NOT_POISONED(buf2[res - 1]); EXPECT_POISONED(buf2[res]); ASSERT_EQ(res, strlen(buf2) + 1); } TEST(MemorySanitizer, opendir) { DIR *dir = opendir("."); closedir(dir); char name[10] = "."; __msan_poison(name, sizeof(name)); EXPECT_UMR(dir = opendir(name)); closedir(dir); } TEST(MemorySanitizer, readdir) { DIR *dir = opendir("."); struct dirent *d = readdir(dir); ASSERT_TRUE(d != NULL); EXPECT_NOT_POISONED(d->d_name[0]); closedir(dir); } TEST(MemorySanitizer, readdir_r) { DIR *dir = opendir("."); struct dirent d; struct dirent *pd; int res = readdir_r(dir, &d, &pd); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pd); EXPECT_NOT_POISONED(d.d_name[0]); closedir(dir); } TEST(MemorySanitizer, realpath) { const char* relpath = "."; char path[PATH_MAX + 1]; char* res = realpath(relpath, path); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(path[0]); } TEST(MemorySanitizer, realpath_null) { const char* relpath = "."; char* res = realpath(relpath, NULL); printf("%d, %s\n", errno, strerror(errno)); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, canonicalize_file_name) { const char* relpath = "."; char* res = canonicalize_file_name(relpath); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } #endif extern char **environ; TEST(MemorySanitizer, setenv) { setenv("AAA", "BBB", 1); for (char **envp = environ; *envp; ++envp) { EXPECT_NOT_POISONED(*envp); EXPECT_NOT_POISONED(*envp[0]); } } TEST(MemorySanitizer, putenv) { char s[] = "AAA=BBB"; putenv(s); for (char **envp = environ; *envp; ++envp) { EXPECT_NOT_POISONED(*envp); EXPECT_NOT_POISONED(*envp[0]); } } TEST(MemorySanitizer, memcpy) { char* x = new char[2]; char* y = new char[2]; x[0] = 1; x[1] = *GetPoisoned(); memcpy(y, x, 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); } void TestUnalignedMemcpy(unsigned left, unsigned right, bool src_is_aligned, bool src_is_poisoned, bool dst_is_poisoned) { fprintf(stderr, "%s(%d, %d, %d, %d, %d)\n", __func__, left, right, src_is_aligned, src_is_poisoned, dst_is_poisoned); const unsigned sz = 20; U4 dst_origin, src_origin; char *dst = (char *)malloc(sz); if (dst_is_poisoned) dst_origin = __msan_get_origin(dst); else memset(dst, 0, sz); char *src = (char *)malloc(sz); if (src_is_poisoned) src_origin = __msan_get_origin(src); else memset(src, 0, sz); memcpy(dst + left, src_is_aligned ? src + left : src, sz - left - right); for (unsigned i = 0; i < (left & (~3U)); ++i) if (dst_is_poisoned) EXPECT_POISONED_O(dst[i], dst_origin); else EXPECT_NOT_POISONED(dst[i]); for (unsigned i = 0; i < (right & (~3U)); ++i) if (dst_is_poisoned) EXPECT_POISONED_O(dst[sz - i - 1], dst_origin); else EXPECT_NOT_POISONED(dst[sz - i - 1]); for (unsigned i = left; i < sz - right; ++i) if (src_is_poisoned) EXPECT_POISONED_O(dst[i], src_origin); else EXPECT_NOT_POISONED(dst[i]); free(dst); free(src); } TEST(MemorySanitizer, memcpy_unaligned) { for (int i = 0; i < 10; ++i) for (int j = 0; j < 10; ++j) for (int aligned = 0; aligned < 2; ++aligned) for (int srcp = 0; srcp < 2; ++srcp) for (int dstp = 0; dstp < 2; ++dstp) TestUnalignedMemcpy(i, j, aligned, srcp, dstp); } TEST(MemorySanitizer, memmove) { char* x = new char[2]; char* y = new char[2]; x[0] = 1; x[1] = *GetPoisoned(); memmove(y, x, 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); } TEST(MemorySanitizer, memccpy_nomatch) { char* x = new char[5]; char* y = new char[5]; strcpy(x, "abc"); memccpy(y, x, 'd', 4); EXPECT_NOT_POISONED(y[0]); EXPECT_NOT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); EXPECT_NOT_POISONED(y[3]); EXPECT_POISONED(y[4]); delete[] x; delete[] y; } TEST(MemorySanitizer, memccpy_match) { char* x = new char[5]; char* y = new char[5]; strcpy(x, "abc"); memccpy(y, x, 'b', 4); EXPECT_NOT_POISONED(y[0]); EXPECT_NOT_POISONED(y[1]); EXPECT_POISONED(y[2]); EXPECT_POISONED(y[3]); EXPECT_POISONED(y[4]); delete[] x; delete[] y; } TEST(MemorySanitizer, memccpy_nomatch_positive) { char* x = new char[5]; char* y = new char[5]; strcpy(x, "abc"); EXPECT_UMR(memccpy(y, x, 'd', 5)); delete[] x; delete[] y; } TEST(MemorySanitizer, memccpy_match_positive) { char* x = new char[5]; char* y = new char[5]; x[0] = 'a'; x[2] = 'b'; EXPECT_UMR(memccpy(y, x, 'b', 5)); delete[] x; delete[] y; } TEST(MemorySanitizer, bcopy) { char* x = new char[2]; char* y = new char[2]; x[0] = 1; x[1] = *GetPoisoned(); bcopy(x, y, 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); } TEST(MemorySanitizer, strdup) { char buf[4] = "abc"; __msan_poison(buf + 2, sizeof(*buf)); char *x = strdup(buf); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[1]); EXPECT_POISONED(x[2]); EXPECT_NOT_POISONED(x[3]); free(x); } TEST(MemorySanitizer, strndup) { char buf[4] = "abc"; __msan_poison(buf + 2, sizeof(*buf)); char *x; EXPECT_UMR(x = strndup(buf, 3)); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[1]); EXPECT_POISONED(x[2]); EXPECT_NOT_POISONED(x[3]); free(x); // Check handling of non 0 terminated strings. buf[3] = 'z'; __msan_poison(buf + 3, sizeof(*buf)); EXPECT_UMR(x = strndup(buf + 3, 1)); EXPECT_POISONED(x[0]); EXPECT_NOT_POISONED(x[1]); free(x); } TEST(MemorySanitizer, strndup_short) { char buf[4] = "abc"; __msan_poison(buf + 1, sizeof(*buf)); __msan_poison(buf + 2, sizeof(*buf)); char *x; EXPECT_UMR(x = strndup(buf, 2)); EXPECT_NOT_POISONED(x[0]); EXPECT_POISONED(x[1]); EXPECT_NOT_POISONED(x[2]); free(x); } template void TestOverlapMemmove() { T *x = new T[size]; ASSERT_GE(size, 3); x[2] = 0; memmove(x, x + 1, (size - 1) * sizeof(T)); EXPECT_NOT_POISONED(x[1]); EXPECT_POISONED(x[0]); EXPECT_POISONED(x[2]); delete [] x; } TEST(MemorySanitizer, overlap_memmove) { TestOverlapMemmove(); TestOverlapMemmove(); TestOverlapMemmove(); TestOverlapMemmove(); } TEST(MemorySanitizer, strcpy) { // NOLINT char* x = new char[3]; char* y = new char[3]; x[0] = 'a'; x[1] = *GetPoisoned(1, 1); x[2] = 0; strcpy(y, x); // NOLINT EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); } TEST(MemorySanitizer, strncpy) { // NOLINT char* x = new char[3]; char* y = new char[5]; x[0] = 'a'; x[1] = *GetPoisoned(1, 1); x[2] = '\0'; strncpy(y, x, 4); // NOLINT EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); EXPECT_NOT_POISONED(y[3]); EXPECT_POISONED(y[4]); } TEST(MemorySanitizer, stpcpy) { // NOLINT char* x = new char[3]; char* y = new char[3]; x[0] = 'a'; x[1] = *GetPoisoned(1, 1); x[2] = 0; char *res = stpcpy(y, x); // NOLINT ASSERT_EQ(res, y + 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); } TEST(MemorySanitizer, strcat) { // NOLINT char a[10]; char b[] = "def"; strcpy(a, "abc"); __msan_poison(b + 1, 1); strcat(a, b); EXPECT_NOT_POISONED(a[3]); EXPECT_POISONED(a[4]); EXPECT_NOT_POISONED(a[5]); EXPECT_NOT_POISONED(a[6]); EXPECT_POISONED(a[7]); } TEST(MemorySanitizer, strncat) { // NOLINT char a[10]; char b[] = "def"; strcpy(a, "abc"); __msan_poison(b + 1, 1); strncat(a, b, 5); EXPECT_NOT_POISONED(a[3]); EXPECT_POISONED(a[4]); EXPECT_NOT_POISONED(a[5]); EXPECT_NOT_POISONED(a[6]); EXPECT_POISONED(a[7]); } TEST(MemorySanitizer, strncat_overflow) { // NOLINT char a[10]; char b[] = "def"; strcpy(a, "abc"); __msan_poison(b + 1, 1); strncat(a, b, 2); EXPECT_NOT_POISONED(a[3]); EXPECT_POISONED(a[4]); EXPECT_NOT_POISONED(a[5]); EXPECT_POISONED(a[6]); EXPECT_POISONED(a[7]); } TEST(MemorySanitizer, wcscat) { wchar_t a[10]; wchar_t b[] = L"def"; wcscpy(a, L"abc"); wcscat(a, b); EXPECT_EQ(6U, wcslen(a)); EXPECT_POISONED(a[7]); a[3] = 0; __msan_poison(b + 1, sizeof(wchar_t)); EXPECT_UMR(wcscat(a, b)); __msan_unpoison(b + 1, sizeof(wchar_t)); __msan_poison(a + 2, sizeof(wchar_t)); EXPECT_UMR(wcscat(a, b)); } TEST(MemorySanitizer, wcsncat) { wchar_t a[10]; wchar_t b[] = L"def"; wcscpy(a, L"abc"); wcsncat(a, b, 5); EXPECT_EQ(6U, wcslen(a)); EXPECT_POISONED(a[7]); a[3] = 0; __msan_poison(a + 4, sizeof(wchar_t) * 6); wcsncat(a, b, 2); EXPECT_EQ(5U, wcslen(a)); EXPECT_POISONED(a[6]); a[3] = 0; __msan_poison(b + 1, sizeof(wchar_t)); EXPECT_UMR(wcsncat(a, b, 2)); __msan_unpoison(b + 1, sizeof(wchar_t)); __msan_poison(a + 2, sizeof(wchar_t)); EXPECT_UMR(wcsncat(a, b, 2)); } #define TEST_STRTO_INT(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ char_type *e; \ EXPECT_EQ(1U, func_name(str_prefix##"1", &e, 10)); \ EXPECT_NOT_POISONED((S8)e); \ } #define TEST_STRTO_FLOAT(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ char_type *e; \ EXPECT_NE(0, func_name(str_prefix##"1.5", &e)); \ EXPECT_NOT_POISONED((S8)e); \ } #define TEST_STRTO_FLOAT_LOC(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ locale_t loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t)0); \ char_type *e; \ EXPECT_NE(0, func_name(str_prefix##"1.5", &e, loc)); \ EXPECT_NOT_POISONED((S8)e); \ freelocale(loc); \ } #define TEST_STRTO_INT_LOC(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ locale_t loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t)0); \ char_type *e; \ ASSERT_EQ(1U, func_name(str_prefix##"1", &e, 10, loc)); \ EXPECT_NOT_POISONED((S8)e); \ freelocale(loc); \ } TEST_STRTO_INT(strtol, char, ) TEST_STRTO_INT(strtoll, char, ) TEST_STRTO_INT(strtoul, char, ) TEST_STRTO_INT(strtoull, char, ) TEST_STRTO_INT(strtouq, char, ) TEST_STRTO_FLOAT(strtof, char, ) TEST_STRTO_FLOAT(strtod, char, ) TEST_STRTO_FLOAT(strtold, char, ) TEST_STRTO_FLOAT_LOC(strtof_l, char, ) TEST_STRTO_FLOAT_LOC(strtod_l, char, ) TEST_STRTO_FLOAT_LOC(strtold_l, char, ) TEST_STRTO_INT_LOC(strtol_l, char, ) TEST_STRTO_INT_LOC(strtoll_l, char, ) TEST_STRTO_INT_LOC(strtoul_l, char, ) TEST_STRTO_INT_LOC(strtoull_l, char, ) TEST_STRTO_INT(wcstol, wchar_t, L) TEST_STRTO_INT(wcstoll, wchar_t, L) TEST_STRTO_INT(wcstoul, wchar_t, L) TEST_STRTO_INT(wcstoull, wchar_t, L) TEST_STRTO_FLOAT(wcstof, wchar_t, L) TEST_STRTO_FLOAT(wcstod, wchar_t, L) TEST_STRTO_FLOAT(wcstold, wchar_t, L) TEST_STRTO_FLOAT_LOC(wcstof_l, wchar_t, L) TEST_STRTO_FLOAT_LOC(wcstod_l, wchar_t, L) TEST_STRTO_FLOAT_LOC(wcstold_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstol_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstoll_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstoul_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstoull_l, wchar_t, L) TEST(MemorySanitizer, strtoimax) { char *e; ASSERT_EQ(1, strtoimax("1", &e, 10)); EXPECT_NOT_POISONED((S8) e); } TEST(MemorySanitizer, strtoumax) { char *e; ASSERT_EQ(1U, strtoumax("1", &e, 10)); EXPECT_NOT_POISONED((S8) e); } #ifdef __GLIBC__ extern "C" float __strtof_l(const char *nptr, char **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__strtof_l, char, ) extern "C" double __strtod_l(const char *nptr, char **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__strtod_l, char, ) extern "C" long double __strtold_l(const char *nptr, char **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__strtold_l, char, ) extern "C" float __wcstof_l(const wchar_t *nptr, wchar_t **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__wcstof_l, wchar_t, L) extern "C" double __wcstod_l(const wchar_t *nptr, wchar_t **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__wcstod_l, wchar_t, L) extern "C" long double __wcstold_l(const wchar_t *nptr, wchar_t **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__wcstold_l, wchar_t, L) #endif // __GLIBC__ TEST(MemorySanitizer, modf) { double x, y; x = modf(2.1, &y); EXPECT_NOT_POISONED(y); } TEST(MemorySanitizer, modff) { float x, y; x = modff(2.1, &y); EXPECT_NOT_POISONED(y); } TEST(MemorySanitizer, modfl) { long double x, y; x = modfl(2.1, &y); EXPECT_NOT_POISONED(y); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, sincos) { double s, c; sincos(0.2, &s, &c); EXPECT_NOT_POISONED(s); EXPECT_NOT_POISONED(c); } #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, sincosf) { float s, c; sincosf(0.2, &s, &c); EXPECT_NOT_POISONED(s); EXPECT_NOT_POISONED(c); } #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, sincosl) { long double s, c; sincosl(0.2, &s, &c); EXPECT_NOT_POISONED(s); EXPECT_NOT_POISONED(c); } #endif TEST(MemorySanitizer, remquo) { int quo; double res = remquo(29.0, 3.0, &quo); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(quo); } TEST(MemorySanitizer, remquof) { int quo; float res = remquof(29.0, 3.0, &quo); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(quo); } #if !defined(__NetBSD__) TEST(MemorySanitizer, remquol) { int quo; long double res = remquof(29.0, 3.0, &quo); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(quo); } #endif TEST(MemorySanitizer, lgamma) { double res = lgamma(1.1); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(signgam); } TEST(MemorySanitizer, lgammaf) { float res = lgammaf(1.1); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(signgam); } #if !defined(__NetBSD__) TEST(MemorySanitizer, lgammal) { long double res = lgammal(1.1); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(signgam); } #endif TEST(MemorySanitizer, lgamma_r) { int sgn; double res = lgamma_r(1.1, &sgn); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(sgn); } TEST(MemorySanitizer, lgammaf_r) { int sgn; float res = lgammaf_r(1.1, &sgn); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(sgn); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, lgammal_r) { int sgn; long double res = lgammal_r(1.1, &sgn); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(sgn); } #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, drand48_r) { struct drand48_data buf; srand48_r(0, &buf); double d; drand48_r(&buf, &d); EXPECT_NOT_POISONED(d); } #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, lrand48_r) { struct drand48_data buf; srand48_r(0, &buf); long d; lrand48_r(&buf, &d); EXPECT_NOT_POISONED(d); } #endif TEST(MemorySanitizer, sprintf) { // NOLINT char buff[10]; break_optimization(buff); EXPECT_POISONED(buff[0]); int res = sprintf(buff, "%d", 1234567); // NOLINT ASSERT_EQ(res, 7); ASSERT_EQ(buff[0], '1'); ASSERT_EQ(buff[1], '2'); ASSERT_EQ(buff[2], '3'); ASSERT_EQ(buff[6], '7'); ASSERT_EQ(buff[7], 0); EXPECT_POISONED(buff[8]); } TEST(MemorySanitizer, snprintf) { char buff[10]; break_optimization(buff); EXPECT_POISONED(buff[0]); int res = snprintf(buff, sizeof(buff), "%d", 1234567); ASSERT_EQ(res, 7); ASSERT_EQ(buff[0], '1'); ASSERT_EQ(buff[1], '2'); ASSERT_EQ(buff[2], '3'); ASSERT_EQ(buff[6], '7'); ASSERT_EQ(buff[7], 0); EXPECT_POISONED(buff[8]); } TEST(MemorySanitizer, swprintf) { wchar_t buff[10]; ASSERT_EQ(4U, sizeof(wchar_t)); break_optimization(buff); EXPECT_POISONED(buff[0]); int res = swprintf(buff, 9, L"%d", 1234567); ASSERT_EQ(res, 7); ASSERT_EQ(buff[0], '1'); ASSERT_EQ(buff[1], '2'); ASSERT_EQ(buff[2], '3'); ASSERT_EQ(buff[6], '7'); ASSERT_EQ(buff[7], L'\0'); EXPECT_POISONED(buff[8]); } TEST(MemorySanitizer, asprintf) { // NOLINT char *pbuf; EXPECT_POISONED(pbuf); int res = asprintf(&pbuf, "%d", 1234567); // NOLINT ASSERT_EQ(res, 7); EXPECT_NOT_POISONED(pbuf); ASSERT_EQ(pbuf[0], '1'); ASSERT_EQ(pbuf[1], '2'); ASSERT_EQ(pbuf[2], '3'); ASSERT_EQ(pbuf[6], '7'); ASSERT_EQ(pbuf[7], 0); free(pbuf); } TEST(MemorySanitizer, mbstowcs) { const char *x = "abc"; wchar_t buff[10]; int res = mbstowcs(buff, x, 2); EXPECT_EQ(2, res); EXPECT_EQ(L'a', buff[0]); EXPECT_EQ(L'b', buff[1]); EXPECT_POISONED(buff[2]); res = mbstowcs(buff, x, 10); EXPECT_EQ(3, res); EXPECT_NOT_POISONED(buff[3]); } TEST(MemorySanitizer, wcstombs) { const wchar_t *x = L"abc"; char buff[10]; int res = wcstombs(buff, x, 4); EXPECT_EQ(res, 3); EXPECT_EQ(buff[0], 'a'); EXPECT_EQ(buff[1], 'b'); EXPECT_EQ(buff[2], 'c'); } TEST(MemorySanitizer, wcsrtombs) { const wchar_t *x = L"abc"; const wchar_t *p = x; char buff[10]; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); int res = wcsrtombs(buff, &p, 4, &mbs); EXPECT_EQ(res, 3); EXPECT_EQ(buff[0], 'a'); EXPECT_EQ(buff[1], 'b'); EXPECT_EQ(buff[2], 'c'); EXPECT_EQ(buff[3], '\0'); EXPECT_POISONED(buff[4]); } TEST(MemorySanitizer, wcsnrtombs) { const wchar_t *x = L"abc"; const wchar_t *p = x; char buff[10]; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); int res = wcsnrtombs(buff, &p, 2, 4, &mbs); EXPECT_EQ(res, 2); EXPECT_EQ(buff[0], 'a'); EXPECT_EQ(buff[1], 'b'); EXPECT_POISONED(buff[2]); } TEST(MemorySanitizer, wcrtomb) { wchar_t x = L'a'; char buff[10]; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); size_t res = wcrtomb(buff, x, &mbs); EXPECT_EQ(res, (size_t)1); EXPECT_EQ(buff[0], 'a'); } TEST(MemorySanitizer, wmemset) { wchar_t x[25]; break_optimization(x); EXPECT_POISONED(x[0]); wmemset(x, L'A', 10); EXPECT_EQ(x[0], L'A'); EXPECT_EQ(x[9], L'A'); EXPECT_POISONED(x[10]); } TEST(MemorySanitizer, mbtowc) { const char *x = "abc"; wchar_t wx; int res = mbtowc(&wx, x, 3); EXPECT_GT(res, 0); EXPECT_NOT_POISONED(wx); } TEST(MemorySanitizer, mbrtowc) { mbstate_t mbs = {}; wchar_t wc; size_t res = mbrtowc(&wc, "\377", 1, &mbs); EXPECT_EQ(res, -1ULL); res = mbrtowc(&wc, "abc", 3, &mbs); EXPECT_GT(res, 0ULL); EXPECT_NOT_POISONED(wc); } TEST(MemorySanitizer, wcsftime) { wchar_t x[100]; time_t t = time(NULL); struct tm tms; struct tm *tmres = localtime_r(&t, &tms); ASSERT_NE((void *)0, tmres); size_t res = wcsftime(x, sizeof(x) / sizeof(x[0]), L"%Y-%m-%d", tmres); EXPECT_GT(res, 0UL); EXPECT_EQ(res, wcslen(x)); } TEST(MemorySanitizer, gettimeofday) { struct timeval tv; struct timezone tz; break_optimization(&tv); break_optimization(&tz); ASSERT_EQ(16U, sizeof(tv)); ASSERT_EQ(8U, sizeof(tz)); EXPECT_POISONED(tv.tv_sec); EXPECT_POISONED(tv.tv_usec); EXPECT_POISONED(tz.tz_minuteswest); EXPECT_POISONED(tz.tz_dsttime); ASSERT_EQ(0, gettimeofday(&tv, &tz)); EXPECT_NOT_POISONED(tv.tv_sec); EXPECT_NOT_POISONED(tv.tv_usec); EXPECT_NOT_POISONED(tz.tz_minuteswest); EXPECT_NOT_POISONED(tz.tz_dsttime); } TEST(MemorySanitizer, clock_gettime) { struct timespec tp; EXPECT_POISONED(tp.tv_sec); EXPECT_POISONED(tp.tv_nsec); ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &tp)); EXPECT_NOT_POISONED(tp.tv_sec); EXPECT_NOT_POISONED(tp.tv_nsec); } TEST(MemorySanitizer, clock_getres) { struct timespec tp; EXPECT_POISONED(tp.tv_sec); EXPECT_POISONED(tp.tv_nsec); ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, 0)); EXPECT_POISONED(tp.tv_sec); EXPECT_POISONED(tp.tv_nsec); ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, &tp)); EXPECT_NOT_POISONED(tp.tv_sec); EXPECT_NOT_POISONED(tp.tv_nsec); } TEST(MemorySanitizer, getitimer) { struct itimerval it1, it2; int res; EXPECT_POISONED(it1.it_interval.tv_sec); EXPECT_POISONED(it1.it_interval.tv_usec); EXPECT_POISONED(it1.it_value.tv_sec); EXPECT_POISONED(it1.it_value.tv_usec); res = getitimer(ITIMER_VIRTUAL, &it1); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(it1.it_interval.tv_sec); EXPECT_NOT_POISONED(it1.it_interval.tv_usec); EXPECT_NOT_POISONED(it1.it_value.tv_sec); EXPECT_NOT_POISONED(it1.it_value.tv_usec); it1.it_interval.tv_sec = it1.it_value.tv_sec = 10000; it1.it_interval.tv_usec = it1.it_value.tv_usec = 0; res = setitimer(ITIMER_VIRTUAL, &it1, &it2); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(it2.it_interval.tv_sec); EXPECT_NOT_POISONED(it2.it_interval.tv_usec); EXPECT_NOT_POISONED(it2.it_value.tv_sec); EXPECT_NOT_POISONED(it2.it_value.tv_usec); // Check that old_value can be 0, and disable the timer. memset(&it1, 0, sizeof(it1)); res = setitimer(ITIMER_VIRTUAL, &it1, 0); ASSERT_EQ(0, res); } TEST(MemorySanitizer, setitimer_null) { setitimer(ITIMER_VIRTUAL, 0, 0); // Not testing the return value, since it the behaviour seems to differ // between libc implementations and POSIX. // Should never crash, though. } TEST(MemorySanitizer, time) { time_t t; EXPECT_POISONED(t); time_t t2 = time(&t); ASSERT_NE(t2, (time_t)-1); EXPECT_NOT_POISONED(t); } TEST(MemorySanitizer, strptime) { struct tm time; char *p = strptime("11/1/2013-05:39", "%m/%d/%Y-%H:%M", &time); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(time.tm_sec); EXPECT_NOT_POISONED(time.tm_hour); EXPECT_NOT_POISONED(time.tm_year); } TEST(MemorySanitizer, localtime) { time_t t = 123; struct tm *time = localtime(&t); ASSERT_TRUE(time != NULL); EXPECT_NOT_POISONED(time->tm_sec); EXPECT_NOT_POISONED(time->tm_hour); EXPECT_NOT_POISONED(time->tm_year); EXPECT_NOT_POISONED(time->tm_isdst); EXPECT_NE(0U, strlen(time->tm_zone)); } TEST(MemorySanitizer, localtime_r) { time_t t = 123; struct tm time; struct tm *res = localtime_r(&t, &time); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(time.tm_sec); EXPECT_NOT_POISONED(time.tm_hour); EXPECT_NOT_POISONED(time.tm_year); EXPECT_NOT_POISONED(time.tm_isdst); EXPECT_NE(0U, strlen(time.tm_zone)); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) /* Creates a temporary file with contents similar to /etc/fstab to be used with getmntent{_r}. */ class TempFstabFile { public: TempFstabFile() : fd (-1) { } ~TempFstabFile() { if (fd >= 0) close (fd); } bool Create(void) { snprintf(tmpfile, sizeof(tmpfile), "/tmp/msan.getmntent.tmp.XXXXXX"); fd = mkstemp(tmpfile); if (fd == -1) return false; const char entry[] = "/dev/root / ext4 errors=remount-ro 0 1"; size_t entrylen = sizeof(entry); size_t bytesWritten = write(fd, entry, entrylen); if (entrylen != bytesWritten) return false; return true; } const char* FileName(void) { return tmpfile; } private: char tmpfile[128]; int fd; }; #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, getmntent) { TempFstabFile fstabtmp; ASSERT_TRUE(fstabtmp.Create()); FILE *fp = setmntent(fstabtmp.FileName(), "r"); struct mntent *mnt = getmntent(fp); ASSERT_TRUE(mnt != NULL); ASSERT_NE(0U, strlen(mnt->mnt_fsname)); ASSERT_NE(0U, strlen(mnt->mnt_dir)); ASSERT_NE(0U, strlen(mnt->mnt_type)); ASSERT_NE(0U, strlen(mnt->mnt_opts)); EXPECT_NOT_POISONED(mnt->mnt_freq); EXPECT_NOT_POISONED(mnt->mnt_passno); fclose(fp); } #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, getmntent_r) { TempFstabFile fstabtmp; ASSERT_TRUE(fstabtmp.Create()); FILE *fp = setmntent(fstabtmp.FileName(), "r"); struct mntent mntbuf; char buf[1000]; struct mntent *mnt = getmntent_r(fp, &mntbuf, buf, sizeof(buf)); ASSERT_TRUE(mnt != NULL); ASSERT_NE(0U, strlen(mnt->mnt_fsname)); ASSERT_NE(0U, strlen(mnt->mnt_dir)); ASSERT_NE(0U, strlen(mnt->mnt_type)); ASSERT_NE(0U, strlen(mnt->mnt_opts)); EXPECT_NOT_POISONED(mnt->mnt_freq); EXPECT_NOT_POISONED(mnt->mnt_passno); fclose(fp); } #endif #if !defined(__NetBSD__) TEST(MemorySanitizer, ether) { const char *asc = "11:22:33:44:55:66"; struct ether_addr *paddr = ether_aton(asc); EXPECT_NOT_POISONED(*paddr); struct ether_addr addr; paddr = ether_aton_r(asc, &addr); ASSERT_EQ(paddr, &addr); EXPECT_NOT_POISONED(addr); char *s = ether_ntoa(&addr); ASSERT_NE(0U, strlen(s)); char buf[100]; s = ether_ntoa_r(&addr, buf); ASSERT_EQ(s, buf); ASSERT_NE(0U, strlen(buf)); } #endif TEST(MemorySanitizer, mmap) { const int size = 4096; void *p1, *p2; p1 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0); __msan_poison(p1, size); munmap(p1, size); for (int i = 0; i < 1000; i++) { p2 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0); if (p2 == p1) break; else munmap(p2, size); } if (p1 == p2) { EXPECT_NOT_POISONED(*(char*)p2); munmap(p2, size); } } #if !defined(__FreeBSD__) && !defined(__NetBSD__) // FIXME: enable and add ecvt. // FIXME: check why msandr does nt handle fcvt. TEST(MemorySanitizer, fcvt) { int a, b; break_optimization(&a); break_optimization(&b); EXPECT_POISONED(a); EXPECT_POISONED(b); char *str = fcvt(12345.6789, 10, &a, &b); EXPECT_NOT_POISONED(a); EXPECT_NOT_POISONED(b); ASSERT_NE(nullptr, str); EXPECT_NOT_POISONED(str[0]); ASSERT_NE(0U, strlen(str)); } #endif #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, fcvt_long) { int a, b; break_optimization(&a); break_optimization(&b); EXPECT_POISONED(a); EXPECT_POISONED(b); char *str = fcvt(111111112345.6789, 10, &a, &b); EXPECT_NOT_POISONED(a); EXPECT_NOT_POISONED(b); ASSERT_NE(nullptr, str); EXPECT_NOT_POISONED(str[0]); ASSERT_NE(0U, strlen(str)); } #endif TEST(MemorySanitizer, memchr) { char x[10]; break_optimization(x); EXPECT_POISONED(x[0]); x[2] = '2'; void *res; EXPECT_UMR(res = memchr(x, '2', 10)); EXPECT_NOT_POISONED(res); x[0] = '0'; x[1] = '1'; res = memchr(x, '2', 10); EXPECT_EQ(&x[2], res); EXPECT_UMR(res = memchr(x, '3', 10)); EXPECT_NOT_POISONED(res); } TEST(MemorySanitizer, memrchr) { char x[10]; break_optimization(x); EXPECT_POISONED(x[0]); x[9] = '9'; void *res; EXPECT_UMR(res = memrchr(x, '9', 10)); EXPECT_NOT_POISONED(res); x[0] = '0'; x[1] = '1'; res = memrchr(x, '0', 2); EXPECT_EQ(&x[0], res); EXPECT_UMR(res = memrchr(x, '7', 10)); EXPECT_NOT_POISONED(res); } TEST(MemorySanitizer, frexp) { int x; x = *GetPoisoned(); double r = frexp(1.1, &x); EXPECT_NOT_POISONED(r); EXPECT_NOT_POISONED(x); x = *GetPoisoned(); float rf = frexpf(1.1, &x); EXPECT_NOT_POISONED(rf); EXPECT_NOT_POISONED(x); x = *GetPoisoned(); double rl = frexpl(1.1, &x); EXPECT_NOT_POISONED(rl); EXPECT_NOT_POISONED(x); } namespace { static int cnt; void SigactionHandler(int signo, siginfo_t* si, void* uc) { ASSERT_EQ(signo, SIGPROF); ASSERT_TRUE(si != NULL); EXPECT_NOT_POISONED(si->si_errno); EXPECT_NOT_POISONED(si->si_pid); #ifdef _UC_MACHINE_PC EXPECT_NOT_POISONED(_UC_MACHINE_PC((ucontext_t*)uc)); #else # if __linux__ # if defined(__x86_64__) EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_RIP]); # elif defined(__i386__) EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_EIP]); # endif # endif #endif ++cnt; } TEST(MemorySanitizer, sigaction) { struct sigaction act = {}; struct sigaction oldact = {}; struct sigaction origact = {}; sigaction(SIGPROF, 0, &origact); act.sa_flags |= SA_SIGINFO; act.sa_sigaction = &SigactionHandler; sigaction(SIGPROF, &act, 0); kill(getpid(), SIGPROF); act.sa_flags &= ~SA_SIGINFO; act.sa_handler = SIG_DFL; sigaction(SIGPROF, &act, 0); act.sa_flags &= ~SA_SIGINFO; act.sa_handler = SIG_IGN; sigaction(SIGPROF, &act, &oldact); EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO); EXPECT_EQ(SIG_DFL, oldact.sa_handler); kill(getpid(), SIGPROF); act.sa_flags |= SA_SIGINFO; act.sa_sigaction = &SigactionHandler; sigaction(SIGPROF, &act, &oldact); EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO); EXPECT_EQ(SIG_IGN, oldact.sa_handler); kill(getpid(), SIGPROF); act.sa_flags &= ~SA_SIGINFO; act.sa_handler = SIG_DFL; sigaction(SIGPROF, &act, &oldact); EXPECT_TRUE(oldact.sa_flags & SA_SIGINFO); EXPECT_EQ(&SigactionHandler, oldact.sa_sigaction); EXPECT_EQ(2, cnt); sigaction(SIGPROF, &origact, 0); } } // namespace TEST(MemorySanitizer, sigemptyset) { sigset_t s; EXPECT_POISONED(s); int res = sigemptyset(&s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } TEST(MemorySanitizer, sigfillset) { sigset_t s; EXPECT_POISONED(s); int res = sigfillset(&s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } TEST(MemorySanitizer, sigpending) { sigset_t s; EXPECT_POISONED(s); int res = sigpending(&s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } TEST(MemorySanitizer, sigprocmask) { sigset_t s; EXPECT_POISONED(s); int res = sigprocmask(SIG_BLOCK, 0, &s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } struct StructWithDtor { ~StructWithDtor(); }; NOINLINE StructWithDtor::~StructWithDtor() { break_optimization(0); } TEST(MemorySanitizer, Invoke) { StructWithDtor s; // Will cause the calls to become invokes. EXPECT_NOT_POISONED(0); EXPECT_POISONED(*GetPoisoned()); EXPECT_NOT_POISONED(0); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(ReturnPoisoned()); } TEST(MemorySanitizer, ptrtoint) { // Test that shadow is propagated through pointer-to-integer conversion. unsigned char c = 0; __msan_poison(&c, 1); uintptr_t u = (uintptr_t)c << 8; EXPECT_NOT_POISONED(u & 0xFF00FF); EXPECT_POISONED(u & 0xFF00); break_optimization(&u); void* p = (void*)u; break_optimization(&p); EXPECT_POISONED(p); EXPECT_NOT_POISONED(((uintptr_t)p) & 0xFF00FF); EXPECT_POISONED(((uintptr_t)p) & 0xFF00); } static void vaargsfn2(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, double)); va_end(vl); } static void vaargsfn(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); // The following call will overwrite __msan_param_tls. // Checks after it test that arg shadow was somehow saved across the call. vaargsfn2(1, 2, 3, 4, *GetPoisoned()); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgTest) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn(1, 13, *x, 42, *y); } static void vaargsfn_many(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgManyTest) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn_many(1, 2, *x, 3, 4, 5, 6, 7, 8, 9, *y); } static void vaargsfn_manyfix(int g1, int g2, int g3, int g4, int g5, int g6, int g7, int g8, int g9, ...) { va_list vl; va_start(vl, g9); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgManyFixTest) { int* x = GetPoisoned(); int* y = GetPoisoned(); vaargsfn_manyfix(1, *x, 3, 4, 5, 6, 7, 8, 9, 10, *y); } static void vaargsfn_pass2(va_list vl) { EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); } static void vaargsfn_pass(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_POISONED(va_arg(vl, int)); vaargsfn_pass2(vl); va_end(vl); } TEST(MemorySanitizer, VAArgPass) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn_pass(1, *x, 2, 3, *y); } static void vaargsfn_copy2(va_list vl) { EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); } static void vaargsfn_copy(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_list vl2; va_copy(vl2, vl); vaargsfn_copy2(vl2); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgCopy) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn_copy(1, 2, *x, 3, *y); } static void vaargsfn_ptr(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int*)); EXPECT_POISONED(va_arg(vl, int*)); EXPECT_NOT_POISONED(va_arg(vl, int*)); EXPECT_POISONED(va_arg(vl, double*)); va_end(vl); } TEST(MemorySanitizer, VAArgPtr) { int** x = GetPoisoned(); double** y = GetPoisoned(8); int z; vaargsfn_ptr(1, &z, *x, &z, *y); } static void vaargsfn_overflow(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int*)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int*)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, int*)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int*)); va_end(vl); } TEST(MemorySanitizer, VAArgOverflow) { int* x = GetPoisoned(); double* y = GetPoisoned(8); int** p = GetPoisoned(16); int z; vaargsfn_overflow(1, 1, 2, *x, 4, 5, 6, 1.1, 2.2, 3.3, *y, 5.5, *p, 7.7, 8.8, // the following args will overflow for sure *x, *y, *p, 7, 9.9, &z, *x, *y, *p); } static void vaargsfn_tlsoverwrite2(int guard, ...) { va_list vl; va_start(vl, guard); for (int i = 0; i < 20; ++i) EXPECT_NOT_POISONED(va_arg(vl, int)); va_end(vl); } static void vaargsfn_tlsoverwrite(int guard, ...) { // This call will overwrite TLS contents unless it's backed up somewhere. vaargsfn_tlsoverwrite2(2, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42); // 20x va_list vl; va_start(vl, guard); for (int i = 0; i < 20; ++i) EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgTLSOverwrite) { int* x = GetPoisoned(); vaargsfn_tlsoverwrite(1, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x); // 20x } struct StructByVal { int a, b, c, d, e, f; }; static void vaargsfn_structbyval(int guard, ...) { va_list vl; va_start(vl, guard); { StructByVal s = va_arg(vl, StructByVal); EXPECT_NOT_POISONED(s.a); EXPECT_POISONED(s.b); EXPECT_NOT_POISONED(s.c); EXPECT_POISONED(s.d); EXPECT_NOT_POISONED(s.e); EXPECT_POISONED(s.f); } { StructByVal s = va_arg(vl, StructByVal); EXPECT_NOT_POISONED(s.a); EXPECT_POISONED(s.b); EXPECT_NOT_POISONED(s.c); EXPECT_POISONED(s.d); EXPECT_NOT_POISONED(s.e); EXPECT_POISONED(s.f); } va_end(vl); } TEST(MemorySanitizer, VAArgStructByVal) { StructByVal s; s.a = 1; s.b = *GetPoisoned(); s.c = 2; s.d = *GetPoisoned(); s.e = 3; s.f = *GetPoisoned(); vaargsfn_structbyval(0, s, s); } NOINLINE void StructByValTestFunc(struct StructByVal s) { EXPECT_NOT_POISONED(s.a); EXPECT_POISONED(s.b); EXPECT_NOT_POISONED(s.c); EXPECT_POISONED(s.d); EXPECT_NOT_POISONED(s.e); EXPECT_POISONED(s.f); } NOINLINE void StructByValTestFunc1(struct StructByVal s) { StructByValTestFunc(s); } NOINLINE void StructByValTestFunc2(int z, struct StructByVal s) { StructByValTestFunc(s); } TEST(MemorySanitizer, StructByVal) { // Large aggregates are passed as "byval" pointer argument in LLVM. struct StructByVal s; s.a = 1; s.b = *GetPoisoned(); s.c = 2; s.d = *GetPoisoned(); s.e = 3; s.f = *GetPoisoned(); StructByValTestFunc(s); StructByValTestFunc1(s); StructByValTestFunc2(0, s); } #if MSAN_HAS_M128 NOINLINE __m128i m128Eq(__m128i *a, __m128i *b) { return _mm_cmpeq_epi16(*a, *b); } NOINLINE __m128i m128Lt(__m128i *a, __m128i *b) { return _mm_cmplt_epi16(*a, *b); } TEST(MemorySanitizer, m128) { __m128i a = _mm_set1_epi16(0x1234); __m128i b = _mm_set1_epi16(0x7890); EXPECT_NOT_POISONED(m128Eq(&a, &b)); EXPECT_NOT_POISONED(m128Lt(&a, &b)); } // FIXME: add more tests for __m128i. #endif // MSAN_HAS_M128 // We should not complain when copying this poisoned hole. struct StructWithHole { U4 a; // 4-byte hole. U8 b; }; NOINLINE StructWithHole ReturnStructWithHole() { StructWithHole res; __msan_poison(&res, sizeof(res)); res.a = 1; res.b = 2; return res; } TEST(MemorySanitizer, StructWithHole) { StructWithHole a = ReturnStructWithHole(); break_optimization(&a); } template NOINLINE T ReturnStruct() { T res; __msan_poison(&res, sizeof(res)); res.a = 1; return res; } template NOINLINE void TestReturnStruct() { T s1 = ReturnStruct(); EXPECT_NOT_POISONED(s1.a); EXPECT_POISONED(s1.b); } struct SSS1 { int a, b, c; }; struct SSS2 { int b, a, c; }; struct SSS3 { int b, c, a; }; struct SSS4 { int c, b, a; }; struct SSS5 { int a; float b; }; struct SSS6 { int a; double b; }; struct SSS7 { S8 b; int a; }; struct SSS8 { S2 b; S8 a; }; TEST(MemorySanitizer, IntStruct3) { TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); } struct LongStruct { U1 a1, b1; U2 a2, b2; U4 a4, b4; U8 a8, b8; }; NOINLINE LongStruct ReturnLongStruct1() { LongStruct res; __msan_poison(&res, sizeof(res)); res.a1 = res.a2 = res.a4 = res.a8 = 111; // leaves b1, .., b8 poisoned. return res; } NOINLINE LongStruct ReturnLongStruct2() { LongStruct res; __msan_poison(&res, sizeof(res)); res.b1 = res.b2 = res.b4 = res.b8 = 111; // leaves a1, .., a8 poisoned. return res; } TEST(MemorySanitizer, LongStruct) { LongStruct s1 = ReturnLongStruct1(); __msan_print_shadow(&s1, sizeof(s1)); EXPECT_NOT_POISONED(s1.a1); EXPECT_NOT_POISONED(s1.a2); EXPECT_NOT_POISONED(s1.a4); EXPECT_NOT_POISONED(s1.a8); EXPECT_POISONED(s1.b1); EXPECT_POISONED(s1.b2); EXPECT_POISONED(s1.b4); EXPECT_POISONED(s1.b8); LongStruct s2 = ReturnLongStruct2(); __msan_print_shadow(&s2, sizeof(s2)); EXPECT_NOT_POISONED(s2.b1); EXPECT_NOT_POISONED(s2.b2); EXPECT_NOT_POISONED(s2.b4); EXPECT_NOT_POISONED(s2.b8); EXPECT_POISONED(s2.a1); EXPECT_POISONED(s2.a2); EXPECT_POISONED(s2.a4); EXPECT_POISONED(s2.a8); } #if defined(__FreeBSD__) || defined(__NetBSD__) #define MSAN_TEST_PRLIMIT 0 #elif defined(__GLIBC__) #define MSAN_TEST_PRLIMIT __GLIBC_PREREQ(2, 13) #else #define MSAN_TEST_PRLIMIT 1 #endif TEST(MemorySanitizer, getrlimit) { struct rlimit limit; __msan_poison(&limit, sizeof(limit)); int result = getrlimit(RLIMIT_DATA, &limit); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(limit.rlim_cur); EXPECT_NOT_POISONED(limit.rlim_max); #if MSAN_TEST_PRLIMIT struct rlimit limit2; __msan_poison(&limit2, sizeof(limit2)); result = prlimit(getpid(), RLIMIT_DATA, &limit, &limit2); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(limit2.rlim_cur); EXPECT_NOT_POISONED(limit2.rlim_max); __msan_poison(&limit, sizeof(limit)); result = prlimit(getpid(), RLIMIT_DATA, nullptr, &limit); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(limit.rlim_cur); EXPECT_NOT_POISONED(limit.rlim_max); result = prlimit(getpid(), RLIMIT_DATA, &limit, nullptr); ASSERT_EQ(result, 0); #endif } TEST(MemorySanitizer, getrusage) { struct rusage usage; __msan_poison(&usage, sizeof(usage)); int result = getrusage(RUSAGE_SELF, &usage); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(usage.ru_utime.tv_sec); EXPECT_NOT_POISONED(usage.ru_utime.tv_usec); EXPECT_NOT_POISONED(usage.ru_stime.tv_sec); EXPECT_NOT_POISONED(usage.ru_stime.tv_usec); EXPECT_NOT_POISONED(usage.ru_maxrss); EXPECT_NOT_POISONED(usage.ru_minflt); EXPECT_NOT_POISONED(usage.ru_majflt); EXPECT_NOT_POISONED(usage.ru_inblock); EXPECT_NOT_POISONED(usage.ru_oublock); EXPECT_NOT_POISONED(usage.ru_nvcsw); EXPECT_NOT_POISONED(usage.ru_nivcsw); } #if defined(__FreeBSD__) || defined(__NetBSD__) static void GetProgramPath(char *buf, size_t sz) { #if defined(__FreeBSD__) int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1 }; #elif defined(__NetBSD__) int mib[4] = { CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; #endif int res = sysctl(mib, 4, buf, &sz, NULL, 0); ASSERT_EQ(0, res); } #elif defined(__GLIBC__) static void GetProgramPath(char *buf, size_t sz) { extern char *program_invocation_name; int res = snprintf(buf, sz, "%s", program_invocation_name); ASSERT_GE(res, 0); ASSERT_LT((size_t)res, sz); } #else # error "TODO: port this" #endif static void dladdr_testfn() {} TEST(MemorySanitizer, dladdr) { Dl_info info; __msan_poison(&info, sizeof(info)); int result = dladdr((const void*)dladdr_testfn, &info); ASSERT_NE(result, 0); EXPECT_NOT_POISONED((unsigned long)info.dli_fname); if (info.dli_fname) EXPECT_NOT_POISONED(strlen(info.dli_fname)); EXPECT_NOT_POISONED((unsigned long)info.dli_fbase); EXPECT_NOT_POISONED((unsigned long)info.dli_sname); if (info.dli_sname) EXPECT_NOT_POISONED(strlen(info.dli_sname)); EXPECT_NOT_POISONED((unsigned long)info.dli_saddr); } #ifndef MSAN_TEST_DISABLE_DLOPEN static int dl_phdr_callback(struct dl_phdr_info *info, size_t size, void *data) { (*(int *)data)++; EXPECT_NOT_POISONED(info->dlpi_addr); EXPECT_NOT_POISONED(strlen(info->dlpi_name)); EXPECT_NOT_POISONED(info->dlpi_phnum); for (int i = 0; i < info->dlpi_phnum; ++i) EXPECT_NOT_POISONED(info->dlpi_phdr[i]); return 0; } // Compute the path to our loadable DSO. We assume it's in the same // directory. Only use string routines that we intercept so far to do this. static void GetPathToLoadable(char *buf, size_t sz) { char program_path[kMaxPathLength]; GetProgramPath(program_path, sizeof(program_path)); const char *last_slash = strrchr(program_path, '/'); ASSERT_NE(nullptr, last_slash); size_t dir_len = (size_t)(last_slash - program_path); #if defined(__x86_64__) static const char basename[] = "libmsan_loadable.x86_64.so"; #elif defined(__MIPSEB__) || defined(MIPSEB) static const char basename[] = "libmsan_loadable.mips64.so"; #elif defined(__mips64) static const char basename[] = "libmsan_loadable.mips64el.so"; #elif defined(__aarch64__) static const char basename[] = "libmsan_loadable.aarch64.so"; #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ static const char basename[] = "libmsan_loadable.powerpc64.so"; #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ static const char basename[] = "libmsan_loadable.powerpc64le.so"; #endif int res = snprintf(buf, sz, "%.*s/%s", (int)dir_len, program_path, basename); ASSERT_GE(res, 0); ASSERT_LT((size_t)res, sz); } TEST(MemorySanitizer, dl_iterate_phdr) { char path[kMaxPathLength]; GetPathToLoadable(path, sizeof(path)); // Having at least one dlopen'ed library in the process makes this more // entertaining. void *lib = dlopen(path, RTLD_LAZY); ASSERT_NE((void*)0, lib); int count = 0; int result = dl_iterate_phdr(dl_phdr_callback, &count); ASSERT_GT(count, 0); dlclose(lib); } TEST(MemorySanitizer, dlopen) { char path[kMaxPathLength]; GetPathToLoadable(path, sizeof(path)); // We need to clear shadow for globals when doing dlopen. In order to test // this, we have to poison the shadow for the DSO before we load it. In // general this is difficult, but the loader tends to reload things in the // same place, so we open, close, and then reopen. The global should always // start out clean after dlopen. for (int i = 0; i < 2; i++) { void *lib = dlopen(path, RTLD_LAZY); if (lib == NULL) { printf("dlerror: %s\n", dlerror()); ASSERT_TRUE(lib != NULL); } void **(*get_dso_global)() = (void **(*)())dlsym(lib, "get_dso_global"); ASSERT_TRUE(get_dso_global != NULL); void **dso_global = get_dso_global(); EXPECT_NOT_POISONED(*dso_global); __msan_poison(dso_global, sizeof(*dso_global)); EXPECT_POISONED(*dso_global); dlclose(lib); } } // Regression test for a crash in dlopen() interceptor. TEST(MemorySanitizer, dlopenFailed) { const char *path = "/libmsan_loadable_does_not_exist.so"; void *lib = dlopen(path, RTLD_LAZY); ASSERT_TRUE(lib == NULL); } #endif // MSAN_TEST_DISABLE_DLOPEN #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, sched_getaffinity) { cpu_set_t mask; int res = sched_getaffinity(getpid(), sizeof(mask), &mask); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(mask); } #endif TEST(MemorySanitizer, scanf) { const char *input = "42 hello"; int* d = new int; char* s = new char[7]; int res = sscanf(input, "%d %5s", d, s); printf("res %d\n", res); ASSERT_EQ(res, 2); EXPECT_NOT_POISONED(*d); EXPECT_NOT_POISONED(s[0]); EXPECT_NOT_POISONED(s[1]); EXPECT_NOT_POISONED(s[2]); EXPECT_NOT_POISONED(s[3]); EXPECT_NOT_POISONED(s[4]); EXPECT_NOT_POISONED(s[5]); EXPECT_POISONED(s[6]); delete[] s; delete d; } static void *SimpleThread_threadfn(void* data) { return new int; } TEST(MemorySanitizer, SimpleThread) { pthread_t t; void *p; int res = pthread_create(&t, NULL, SimpleThread_threadfn, NULL); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(t); res = pthread_join(t, &p); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(p); delete (int*)p; } static void *SmallStackThread_threadfn(void* data) { return 0; } #ifdef PTHREAD_STACK_MIN # define SMALLSTACKSIZE PTHREAD_STACK_MIN # define SMALLPRESTACKSIZE PTHREAD_STACK_MIN #else # define SMALLSTACKSIZE 64 * 1024 # define SMALLPRESTACKSIZE 16 * 1024 #endif TEST(MemorySanitizer, SmallStackThread) { pthread_attr_t attr; pthread_t t; void *p; int res; res = pthread_attr_init(&attr); ASSERT_EQ(0, res); res = pthread_attr_setstacksize(&attr, SMALLSTACKSIZE); ASSERT_EQ(0, res); res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL); ASSERT_EQ(0, res); res = pthread_join(t, &p); ASSERT_EQ(0, res); res = pthread_attr_destroy(&attr); ASSERT_EQ(0, res); } TEST(MemorySanitizer, SmallPreAllocatedStackThread) { pthread_attr_t attr; pthread_t t; int res; res = pthread_attr_init(&attr); ASSERT_EQ(0, res); void *stack; const size_t kStackSize = SMALLPRESTACKSIZE; res = posix_memalign(&stack, 4096, kStackSize); ASSERT_EQ(0, res); res = pthread_attr_setstack(&attr, stack, kStackSize); ASSERT_EQ(0, res); res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL); EXPECT_EQ(0, res); res = pthread_join(t, NULL); ASSERT_EQ(0, res); res = pthread_attr_destroy(&attr); ASSERT_EQ(0, res); } TEST(MemorySanitizer, pthread_attr_get) { pthread_attr_t attr; int res; res = pthread_attr_init(&attr); ASSERT_EQ(0, res); { int v; res = pthread_attr_getdetachstate(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { size_t v; res = pthread_attr_getguardsize(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { struct sched_param v; res = pthread_attr_getschedparam(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { int v; res = pthread_attr_getschedpolicy(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { int v; res = pthread_attr_getinheritsched(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { int v; res = pthread_attr_getscope(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { size_t v; res = pthread_attr_getstacksize(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { void *v; size_t w; res = pthread_attr_getstack(&attr, &v, &w); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); EXPECT_NOT_POISONED(w); } #if !defined(__NetBSD__) { cpu_set_t v; res = pthread_attr_getaffinity_np(&attr, sizeof(v), &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } #endif res = pthread_attr_destroy(&attr); ASSERT_EQ(0, res); } TEST(MemorySanitizer, pthread_getschedparam) { int policy; struct sched_param param; int res = pthread_getschedparam(pthread_self(), &policy, ¶m); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(policy); EXPECT_NOT_POISONED(param.sched_priority); } TEST(MemorySanitizer, pthread_key_create) { pthread_key_t key; int res = pthread_key_create(&key, NULL); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(key); res = pthread_key_delete(key); ASSERT_EQ(0, res); } namespace { struct SignalCondArg { pthread_cond_t* cond; pthread_mutex_t* mu; bool broadcast; }; void *SignalCond(void *param) { SignalCondArg *arg = reinterpret_cast(param); pthread_mutex_lock(arg->mu); if (arg->broadcast) pthread_cond_broadcast(arg->cond); else pthread_cond_signal(arg->cond); pthread_mutex_unlock(arg->mu); return 0; } } // namespace TEST(MemorySanitizer, pthread_cond_wait) { pthread_cond_t cond; pthread_mutex_t mu; SignalCondArg args = {&cond, &mu, false}; pthread_cond_init(&cond, 0); pthread_mutex_init(&mu, 0); pthread_mutex_lock(&mu); // signal pthread_t thr; pthread_create(&thr, 0, SignalCond, &args); int res = pthread_cond_wait(&cond, &mu); ASSERT_EQ(0, res); pthread_join(thr, 0); // broadcast args.broadcast = true; pthread_create(&thr, 0, SignalCond, &args); res = pthread_cond_wait(&cond, &mu); ASSERT_EQ(0, res); pthread_join(thr, 0); pthread_mutex_unlock(&mu); pthread_mutex_destroy(&mu); pthread_cond_destroy(&cond); } TEST(MemorySanitizer, tmpnam) { char s[L_tmpnam]; char *res = tmpnam(s); ASSERT_EQ(s, res); EXPECT_NOT_POISONED(strlen(res)); } TEST(MemorySanitizer, tempnam) { char *res = tempnam(NULL, "zzz"); EXPECT_NOT_POISONED(strlen(res)); free(res); } TEST(MemorySanitizer, posix_memalign) { void *p; EXPECT_POISONED(p); int res = posix_memalign(&p, 4096, 13); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(p); EXPECT_EQ(0U, (uintptr_t)p % 4096); free(p); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, memalign) { void *p = memalign(4096, 13); EXPECT_EQ(0U, (uintptr_t)p % 4096); free(p); } #endif TEST(MemorySanitizer, valloc) { void *a = valloc(100); uintptr_t PageSize = GetPageSize(); EXPECT_EQ(0U, (uintptr_t)a % PageSize); free(a); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, pvalloc) { uintptr_t PageSize = GetPageSize(); void *p = pvalloc(PageSize + 100); EXPECT_EQ(0U, (uintptr_t)p % PageSize); EXPECT_EQ(2 * PageSize, __sanitizer_get_allocated_size(p)); free(p); p = pvalloc(0); // pvalloc(0) should allocate at least one page. EXPECT_EQ(0U, (uintptr_t)p % PageSize); EXPECT_EQ(PageSize, __sanitizer_get_allocated_size(p)); free(p); } #endif TEST(MemorySanitizer, inet_pton) { const char *s = "1:0:0:0:0:0:0:8"; unsigned char buf[sizeof(struct in6_addr)]; int res = inet_pton(AF_INET6, s, buf); ASSERT_EQ(1, res); EXPECT_NOT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[sizeof(struct in6_addr) - 1]); char s_out[INET6_ADDRSTRLEN]; EXPECT_POISONED(s_out[3]); const char *q = inet_ntop(AF_INET6, buf, s_out, INET6_ADDRSTRLEN); ASSERT_NE((void*)0, q); EXPECT_NOT_POISONED(s_out[3]); } TEST(MemorySanitizer, inet_aton) { const char *s = "127.0.0.1"; struct in_addr in[2]; int res = inet_aton(s, in); ASSERT_NE(0, res); EXPECT_NOT_POISONED(in[0]); EXPECT_POISONED(*(char *)(in + 1)); } TEST(MemorySanitizer, uname) { struct utsname u; int res = uname(&u); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(strlen(u.sysname)); EXPECT_NOT_POISONED(strlen(u.nodename)); EXPECT_NOT_POISONED(strlen(u.release)); EXPECT_NOT_POISONED(strlen(u.version)); EXPECT_NOT_POISONED(strlen(u.machine)); } TEST(MemorySanitizer, gethostname) { char buf[100]; int res = gethostname(buf, 100); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(strlen(buf)); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, sysinfo) { struct sysinfo info; int res = sysinfo(&info); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(info); } #endif TEST(MemorySanitizer, getpwuid) { struct passwd *p = getpwuid(0); // root ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->pw_name); ASSERT_TRUE(p->pw_name != NULL); EXPECT_NOT_POISONED(p->pw_name[0]); EXPECT_NOT_POISONED(p->pw_uid); ASSERT_EQ(0U, p->pw_uid); } TEST(MemorySanitizer, getpwuid_r) { struct passwd pwd; struct passwd *pwdres; char buf[10000]; int res = getpwuid_r(0, &pwd, buf, sizeof(buf), &pwdres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pwd.pw_name); ASSERT_TRUE(pwd.pw_name != NULL); EXPECT_NOT_POISONED(pwd.pw_name[0]); EXPECT_NOT_POISONED(pwd.pw_uid); ASSERT_EQ(0U, pwd.pw_uid); EXPECT_NOT_POISONED(pwdres); } TEST(MemorySanitizer, getpwnam_r) { struct passwd pwd; struct passwd *pwdres; char buf[10000]; int res = getpwnam_r("root", &pwd, buf, sizeof(buf), &pwdres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pwd.pw_name); ASSERT_TRUE(pwd.pw_name != NULL); EXPECT_NOT_POISONED(pwd.pw_name[0]); EXPECT_NOT_POISONED(pwd.pw_uid); ASSERT_EQ(0U, pwd.pw_uid); EXPECT_NOT_POISONED(pwdres); } TEST(MemorySanitizer, getpwnam_r_positive) { struct passwd pwd; struct passwd *pwdres; char s[5]; strncpy(s, "abcd", 5); __msan_poison(s, 5); char buf[10000]; int res; EXPECT_UMR(res = getpwnam_r(s, &pwd, buf, sizeof(buf), &pwdres)); } TEST(MemorySanitizer, getgrnam_r) { struct group grp; struct group *grpres; char buf[10000]; int res = getgrnam_r(SUPERUSER_GROUP, &grp, buf, sizeof(buf), &grpres); ASSERT_EQ(0, res); // Note that getgrnam_r() returns 0 if the matching group is not found. ASSERT_NE(nullptr, grpres); EXPECT_NOT_POISONED(grp.gr_name); ASSERT_TRUE(grp.gr_name != NULL); EXPECT_NOT_POISONED(grp.gr_name[0]); EXPECT_NOT_POISONED(grp.gr_gid); EXPECT_NOT_POISONED(grpres); } TEST(MemorySanitizer, getpwent) { setpwent(); struct passwd *p = getpwent(); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->pw_name); ASSERT_TRUE(p->pw_name != NULL); EXPECT_NOT_POISONED(p->pw_name[0]); EXPECT_NOT_POISONED(p->pw_uid); } TEST(MemorySanitizer, getpwent_r) { struct passwd pwd; struct passwd *pwdres; char buf[10000]; setpwent(); int res = getpwent_r(&pwd, buf, sizeof(buf), &pwdres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pwd.pw_name); ASSERT_TRUE(pwd.pw_name != NULL); EXPECT_NOT_POISONED(pwd.pw_name[0]); EXPECT_NOT_POISONED(pwd.pw_uid); EXPECT_NOT_POISONED(pwdres); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, fgetpwent) { FILE *fp = fopen("/etc/passwd", "r"); struct passwd *p = fgetpwent(fp); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->pw_name); ASSERT_TRUE(p->pw_name != NULL); EXPECT_NOT_POISONED(p->pw_name[0]); EXPECT_NOT_POISONED(p->pw_uid); fclose(fp); } #endif TEST(MemorySanitizer, getgrent) { setgrent(); struct group *p = getgrent(); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->gr_name); ASSERT_TRUE(p->gr_name != NULL); EXPECT_NOT_POISONED(p->gr_name[0]); EXPECT_NOT_POISONED(p->gr_gid); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, fgetgrent) { FILE *fp = fopen("/etc/group", "r"); struct group *grp = fgetgrent(fp); ASSERT_TRUE(grp != NULL); EXPECT_NOT_POISONED(grp->gr_name); ASSERT_TRUE(grp->gr_name != NULL); EXPECT_NOT_POISONED(grp->gr_name[0]); EXPECT_NOT_POISONED(grp->gr_gid); for (char **p = grp->gr_mem; *p; ++p) { EXPECT_NOT_POISONED((*p)[0]); EXPECT_TRUE(strlen(*p) > 0); } fclose(fp); } #endif TEST(MemorySanitizer, getgrent_r) { struct group grp; struct group *grpres; char buf[10000]; setgrent(); int res = getgrent_r(&grp, buf, sizeof(buf), &grpres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(grp.gr_name); ASSERT_TRUE(grp.gr_name != NULL); EXPECT_NOT_POISONED(grp.gr_name[0]); EXPECT_NOT_POISONED(grp.gr_gid); EXPECT_NOT_POISONED(grpres); } #if !defined(__FreeBSD__) && !defined(__NetBSD__) TEST(MemorySanitizer, fgetgrent_r) { FILE *fp = fopen("/etc/group", "r"); struct group grp; struct group *grpres; char buf[10000]; setgrent(); int res = fgetgrent_r(fp, &grp, buf, sizeof(buf), &grpres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(grp.gr_name); ASSERT_TRUE(grp.gr_name != NULL); EXPECT_NOT_POISONED(grp.gr_name[0]); EXPECT_NOT_POISONED(grp.gr_gid); EXPECT_NOT_POISONED(grpres); fclose(fp); } #endif TEST(MemorySanitizer, getgroups) { int n = getgroups(0, 0); gid_t *gids = new gid_t[n]; int res = getgroups(n, gids); ASSERT_EQ(n, res); for (int i = 0; i < n; ++i) EXPECT_NOT_POISONED(gids[i]); } TEST(MemorySanitizer, getgroups_zero) { gid_t group; int n = getgroups(0, &group); ASSERT_GE(n, 0); } TEST(MemorySanitizer, getgroups_negative) { gid_t group; int n = getgroups(-1, 0); ASSERT_EQ(-1, n); n = getgroups(-1, 0); ASSERT_EQ(-1, n); } TEST(MemorySanitizer, wordexp) { wordexp_t w; int res = wordexp("a b c", &w, 0); ASSERT_EQ(0, res); ASSERT_EQ(3U, w.we_wordc); ASSERT_STREQ("a", w.we_wordv[0]); ASSERT_STREQ("b", w.we_wordv[1]); ASSERT_STREQ("c", w.we_wordv[2]); } template static bool applySlt(T value, T shadow) { __msan_partial_poison(&value, &shadow, sizeof(T)); volatile bool zzz = true; // This "|| zzz" trick somehow makes LLVM emit "icmp slt" instead of // a shift-and-trunc to get at the highest bit. volatile bool v = value < 0 || zzz; return v; } TEST(MemorySanitizer, SignedCompareWithZero) { EXPECT_NOT_POISONED(applySlt(0xF, 0xF)); EXPECT_NOT_POISONED(applySlt(0xF, 0xFF)); EXPECT_NOT_POISONED(applySlt(0xF, 0xFFFFFF)); EXPECT_NOT_POISONED(applySlt(0xF, 0x7FFFFFF)); EXPECT_UMR(applySlt(0xF, 0x80FFFFFF)); EXPECT_UMR(applySlt(0xF, 0xFFFFFFFF)); } template static T poisoned(T Va, S Sa) { char SIZE_CHECK1[(ssize_t)sizeof(T) - (ssize_t)sizeof(S)]; char SIZE_CHECK2[(ssize_t)sizeof(S) - (ssize_t)sizeof(T)]; T a; a = Va; __msan_partial_poison(&a, &Sa, sizeof(T)); return a; } TEST(MemorySanitizer, ICmpRelational) { EXPECT_NOT_POISONED(poisoned(0, 0) < poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) < poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) < poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) < poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) < poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) < poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) < poisoned(-1, 0xFFFFFFFFU)); EXPECT_NOT_POISONED(poisoned(0, 0) <= poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) <= poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) <= poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) <= poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) <= poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) <= poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) <= poisoned(-1, 0xFFFFFFFFU)); EXPECT_NOT_POISONED(poisoned(0, 0) > poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) > poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) > poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) > poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) > poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) > poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) > poisoned(-1, 0xFFFFFFFFU)); EXPECT_NOT_POISONED(poisoned(0, 0) >= poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) >= poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) >= poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) >= poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) >= poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) >= poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) >= poisoned(-1, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(6, 0xF) > poisoned(7, 0)); EXPECT_POISONED(poisoned(0xF, 0xF) > poisoned(7, 0)); // Note that "icmp op X, Y" is approximated with "or shadow(X), shadow(Y)" // and therefore may generate false positives in some cases, e.g. the // following one: // EXPECT_NOT_POISONED(poisoned(-1, 0x80000000U) >= poisoned(-1, 0U)); } #if MSAN_HAS_M128 TEST(MemorySanitizer, ICmpVectorRelational) { EXPECT_NOT_POISONED( _mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0)), poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0)))); EXPECT_NOT_POISONED( _mm_cmplt_epi16(poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0)), poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0)))); EXPECT_POISONED( _mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF)), poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF)))); EXPECT_POISONED(_mm_cmpgt_epi16(poisoned(_mm_set1_epi16(6), _mm_set1_epi16(0xF)), poisoned(_mm_set1_epi16(7), _mm_set1_epi16(0)))); } TEST(MemorySanitizer, stmxcsr_ldmxcsr) { U4 x = _mm_getcsr(); EXPECT_NOT_POISONED(x); _mm_setcsr(x); __msan_poison(&x, sizeof(x)); U4 origin = __LINE__; __msan_set_origin(&x, sizeof(x), origin); EXPECT_UMR_O(_mm_setcsr(x), origin); } #endif // Volatile bitfield store is implemented as load-mask-store // Test that we don't warn on the store of (uninitialized) padding. struct VolatileBitfieldStruct { volatile unsigned x : 1; unsigned y : 1; }; TEST(MemorySanitizer, VolatileBitfield) { VolatileBitfieldStruct *S = new VolatileBitfieldStruct; S->x = 1; EXPECT_NOT_POISONED((unsigned)S->x); EXPECT_POISONED((unsigned)S->y); } TEST(MemorySanitizer, UnalignedLoad) { char x[32] __attribute__((aligned(8))); U4 origin = __LINE__; for (unsigned i = 0; i < sizeof(x) / 4; ++i) __msan_set_origin(x + 4 * i, 4, origin + i); memset(x + 8, 0, 16); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 6), origin + 1); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 7), origin + 1); EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x + 8)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x + 9)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x + 22)); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 23), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 24), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 4), origin + 1); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 7), origin + 1); EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x + 8)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x + 9)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x + 20)); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 21), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 24), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x), origin); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 1), origin); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 7), origin + 1); EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x + 8)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x + 9)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x + 16)); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 17), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 21), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 24), origin + 6); } TEST(MemorySanitizer, UnalignedStore16) { char x[5] __attribute__((aligned(4))); U2 y2 = 0; U4 origin = __LINE__; __msan_poison(&y2, 1); __msan_set_origin(&y2, 1, origin); __sanitizer_unaligned_store16(x + 1, y2); EXPECT_POISONED_O(x[0], origin); EXPECT_POISONED_O(x[1], origin); EXPECT_NOT_POISONED(x[2]); EXPECT_POISONED_O(x[3], origin); } TEST(MemorySanitizer, UnalignedStore32) { char x[8] __attribute__((aligned(4))); U4 y4 = 0; U4 origin = __LINE__; __msan_poison(&y4, 2); __msan_set_origin(&y4, 2, origin); __sanitizer_unaligned_store32(x + 3, y4); EXPECT_POISONED_O(x[0], origin); EXPECT_POISONED_O(x[1], origin); EXPECT_POISONED_O(x[2], origin); EXPECT_POISONED_O(x[3], origin); EXPECT_POISONED_O(x[4], origin); EXPECT_NOT_POISONED(x[5]); EXPECT_NOT_POISONED(x[6]); EXPECT_POISONED_O(x[7], origin); } TEST(MemorySanitizer, UnalignedStore64) { char x[16] __attribute__((aligned(8))); U8 y8 = 0; U4 origin = __LINE__; __msan_poison(&y8, 3); __msan_poison(((char *)&y8) + sizeof(y8) - 2, 1); __msan_set_origin(&y8, 8, origin); __sanitizer_unaligned_store64(x + 3, y8); EXPECT_POISONED_O(x[0], origin); EXPECT_POISONED_O(x[1], origin); EXPECT_POISONED_O(x[2], origin); EXPECT_POISONED_O(x[3], origin); EXPECT_POISONED_O(x[4], origin); EXPECT_POISONED_O(x[5], origin); EXPECT_NOT_POISONED(x[6]); EXPECT_NOT_POISONED(x[7]); EXPECT_NOT_POISONED(x[8]); EXPECT_POISONED_O(x[9], origin); EXPECT_NOT_POISONED(x[10]); EXPECT_POISONED_O(x[11], origin); } TEST(MemorySanitizer, UnalignedStore16_precise) { char x[8] __attribute__((aligned(4))); U2 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_poison(((char *)&y) + 1, 1); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store16(x + 3, y); EXPECT_POISONED_O(x[0], originx1); EXPECT_POISONED_O(x[1], originx1); EXPECT_POISONED_O(x[2], originx1); EXPECT_NOT_POISONED(x[3]); EXPECT_POISONED_O(x[4], originy); EXPECT_POISONED_O(x[5], originy); EXPECT_POISONED_O(x[6], originy); EXPECT_POISONED_O(x[7], originy); } TEST(MemorySanitizer, UnalignedStore16_precise2) { char x[8] __attribute__((aligned(4))); U2 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_poison(((char *)&y), 1); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store16(x + 3, y); EXPECT_POISONED_O(x[0], originy); EXPECT_POISONED_O(x[1], originy); EXPECT_POISONED_O(x[2], originy); EXPECT_POISONED_O(x[3], originy); EXPECT_NOT_POISONED(x[4]); EXPECT_POISONED_O(x[5], originx2); EXPECT_POISONED_O(x[6], originx2); EXPECT_POISONED_O(x[7], originx2); } TEST(MemorySanitizer, UnalignedStore64_precise) { char x[12] __attribute__((aligned(8))); U8 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originx3 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_set_origin(x + 8, 4, originx3); __msan_poison(((char *)&y) + 1, 1); __msan_poison(((char *)&y) + 7, 1); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store64(x + 2, y); EXPECT_POISONED_O(x[0], originy); EXPECT_POISONED_O(x[1], originy); EXPECT_NOT_POISONED(x[2]); EXPECT_POISONED_O(x[3], originy); EXPECT_NOT_POISONED(x[4]); EXPECT_NOT_POISONED(x[5]); EXPECT_NOT_POISONED(x[6]); EXPECT_NOT_POISONED(x[7]); EXPECT_NOT_POISONED(x[8]); EXPECT_POISONED_O(x[9], originy); EXPECT_POISONED_O(x[10], originy); EXPECT_POISONED_O(x[11], originy); } TEST(MemorySanitizer, UnalignedStore64_precise2) { char x[12] __attribute__((aligned(8))); U8 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originx3 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_set_origin(x + 8, 4, originx3); __msan_poison(((char *)&y) + 3, 3); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store64(x + 2, y); EXPECT_POISONED_O(x[0], originx1); EXPECT_POISONED_O(x[1], originx1); EXPECT_NOT_POISONED(x[2]); EXPECT_NOT_POISONED(x[3]); EXPECT_NOT_POISONED(x[4]); EXPECT_POISONED_O(x[5], originy); EXPECT_POISONED_O(x[6], originy); EXPECT_POISONED_O(x[7], originy); EXPECT_NOT_POISONED(x[8]); EXPECT_NOT_POISONED(x[9]); EXPECT_POISONED_O(x[10], originx3); EXPECT_POISONED_O(x[11], originx3); } #if (defined(__x86_64__) && defined(__clang__)) namespace { typedef U1 V16x8 __attribute__((__vector_size__(16))); typedef U2 V8x16 __attribute__((__vector_size__(16))); typedef U4 V4x32 __attribute__((__vector_size__(16))); typedef U8 V2x64 __attribute__((__vector_size__(16))); typedef U4 V8x32 __attribute__((__vector_size__(32))); typedef U8 V4x64 __attribute__((__vector_size__(32))); typedef U4 V2x32 __attribute__((__vector_size__(8))); typedef U2 V4x16 __attribute__((__vector_size__(8))); typedef U1 V8x8 __attribute__((__vector_size__(8))); V8x16 shift_sse2_left_scalar(V8x16 x, U4 y) { return _mm_slli_epi16(x, y); } V8x16 shift_sse2_left(V8x16 x, V8x16 y) { return _mm_sll_epi16(x, y); } TEST(VectorShiftTest, sse2_left_scalar) { V8x16 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3, 4, 5, 6, 7}; V8x16 u = shift_sse2_left_scalar(v, 2); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_NOT_POISONED(u[0] | (3U << 2)); EXPECT_NOT_POISONED(u[1] | (7U << 2)); u[0] = u[1] = 0; EXPECT_NOT_POISONED(u); } TEST(VectorShiftTest, sse2_left_scalar_by_uninit) { V8x16 v = {0, 1, 2, 3, 4, 5, 6, 7}; V8x16 u = shift_sse2_left_scalar(v, Poisoned()); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_POISONED(u[2]); EXPECT_POISONED(u[3]); EXPECT_POISONED(u[4]); EXPECT_POISONED(u[5]); EXPECT_POISONED(u[6]); EXPECT_POISONED(u[7]); } TEST(VectorShiftTest, sse2_left) { V8x16 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3, 4, 5, 6, 7}; // Top 64 bits of shift count don't affect the result. V2x64 s = {2, Poisoned()}; V8x16 u = shift_sse2_left(v, s); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_NOT_POISONED(u[0] | (3U << 2)); EXPECT_NOT_POISONED(u[1] | (7U << 2)); u[0] = u[1] = 0; EXPECT_NOT_POISONED(u); } TEST(VectorShiftTest, sse2_left_by_uninit) { V8x16 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3, 4, 5, 6, 7}; V2x64 s = {Poisoned(), Poisoned()}; V8x16 u = shift_sse2_left(v, s); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_POISONED(u[2]); EXPECT_POISONED(u[3]); EXPECT_POISONED(u[4]); EXPECT_POISONED(u[5]); EXPECT_POISONED(u[6]); EXPECT_POISONED(u[7]); } #ifdef __AVX2__ V4x32 shift_avx2_left(V4x32 x, V4x32 y) { return _mm_sllv_epi32(x, y); } // This is variable vector shift that's only available starting with AVX2. // V4x32 shift_avx2_left(V4x32 x, V4x32 y) { TEST(VectorShiftTest, avx2_left) { V4x32 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3}; V4x32 s = {2, Poisoned(), 3, Poisoned()}; V4x32 u = shift_avx2_left(v, s); EXPECT_POISONED(u[0]); EXPECT_NOT_POISONED(u[0] | (~7U)); EXPECT_POISONED(u[1]); EXPECT_POISONED(u[1] | (~31U)); EXPECT_NOT_POISONED(u[2]); EXPECT_POISONED(u[3]); EXPECT_POISONED(u[3] | (~31U)); } #endif // __AVX2__ } // namespace TEST(VectorPackTest, sse2_packssdw_128) { const unsigned S2_max = (1 << 15) - 1; V4x32 a = {Poisoned(0, 0xFF0000), Poisoned(0, 0xFFFF0000), S2_max + 100, 4}; V4x32 b = {Poisoned(0, 0xFF), S2_max + 10000, Poisoned(0, 0xFF00), S2_max}; V8x16 c = _mm_packs_epi32(a, b); EXPECT_POISONED(c[0]); EXPECT_POISONED(c[1]); EXPECT_NOT_POISONED(c[2]); EXPECT_NOT_POISONED(c[3]); EXPECT_POISONED(c[4]); EXPECT_NOT_POISONED(c[5]); EXPECT_POISONED(c[6]); EXPECT_NOT_POISONED(c[7]); EXPECT_EQ(c[2], S2_max); EXPECT_EQ(c[3], 4); EXPECT_EQ(c[5], S2_max); EXPECT_EQ(c[7], S2_max); } TEST(VectorPackTest, mmx_packuswb) { const unsigned U1_max = (1 << 8) - 1; V4x16 a = {Poisoned(0, 0xFF00), Poisoned(0, 0xF000U), U1_max + 100, 4}; V4x16 b = {Poisoned(0, 0xFF), U1_max - 1, Poisoned(0, 0xF), U1_max}; V8x8 c = _mm_packs_pu16(a, b); EXPECT_POISONED(c[0]); EXPECT_POISONED(c[1]); EXPECT_NOT_POISONED(c[2]); EXPECT_NOT_POISONED(c[3]); EXPECT_POISONED(c[4]); EXPECT_NOT_POISONED(c[5]); EXPECT_POISONED(c[6]); EXPECT_NOT_POISONED(c[7]); EXPECT_EQ(c[2], U1_max); EXPECT_EQ(c[3], 4); EXPECT_EQ(c[5], U1_max - 1); EXPECT_EQ(c[7], U1_max); } TEST(VectorSadTest, sse2_psad_bw) { V16x8 a = {Poisoned(), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; V16x8 b = {100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115}; V2x64 c = _mm_sad_epu8(a, b); EXPECT_POISONED(c[0]); EXPECT_NOT_POISONED(c[1]); EXPECT_EQ(800U, c[1]); } TEST(VectorMaddTest, mmx_pmadd_wd) { V4x16 a = {Poisoned(), 1, 2, 3}; V4x16 b = {100, 101, 102, 103}; V2x32 c = _mm_madd_pi16(a, b); EXPECT_POISONED(c[0]); EXPECT_NOT_POISONED(c[1]); EXPECT_EQ((unsigned)(2 * 102 + 3 * 103), c[1]); } TEST(VectorCmpTest, mm_cmpneq_ps) { V4x32 c; c = _mm_cmpneq_ps(V4x32{Poisoned(), 1, 2, 3}, V4x32{4, 5, Poisoned(), 6}); EXPECT_POISONED(c[0]); EXPECT_NOT_POISONED(c[1]); EXPECT_POISONED(c[2]); EXPECT_NOT_POISONED(c[3]); c = _mm_cmpneq_ps(V4x32{0, 1, 2, 3}, V4x32{4, 5, 6, 7}); EXPECT_NOT_POISONED(c); } TEST(VectorCmpTest, mm_cmpneq_sd) { V2x64 c; c = _mm_cmpneq_sd(V2x64{Poisoned(), 1}, V2x64{2, 3}); EXPECT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, 2}, V2x64{Poisoned(), 3}); EXPECT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, 2}, V2x64{3, 4}); EXPECT_NOT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, Poisoned()}, V2x64{2, Poisoned()}); EXPECT_NOT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, Poisoned()}, V2x64{1, Poisoned()}); EXPECT_NOT_POISONED(c[0]); } TEST(VectorCmpTest, builtin_ia32_ucomisdlt) { U4 c; c = __builtin_ia32_ucomisdlt(V2x64{Poisoned(), 1}, V2x64{2, 3}); EXPECT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, 2}, V2x64{Poisoned(), 3}); EXPECT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, 2}, V2x64{3, 4}); EXPECT_NOT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, Poisoned()}, V2x64{2, Poisoned()}); EXPECT_NOT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, Poisoned()}, V2x64{1, Poisoned()}); EXPECT_NOT_POISONED(c); } #endif // defined(__x86_64__) && defined(__clang__) TEST(MemorySanitizerOrigins, SetGet) { EXPECT_EQ(TrackingOrigins(), !!__msan_get_track_origins()); if (!TrackingOrigins()) return; int x; __msan_set_origin(&x, sizeof(x), 1234); EXPECT_ORIGIN(1234U, __msan_get_origin(&x)); __msan_set_origin(&x, sizeof(x), 5678); EXPECT_ORIGIN(5678U, __msan_get_origin(&x)); __msan_set_origin(&x, sizeof(x), 0); EXPECT_ORIGIN(0U, __msan_get_origin(&x)); } namespace { struct S { U4 dummy; U2 a; U2 b; }; TEST(MemorySanitizerOrigins, InitializedStoreDoesNotChangeOrigin) { if (!TrackingOrigins()) return; S s; U4 origin = rand(); // NOLINT s.a = *GetPoisonedO(0, origin); EXPECT_ORIGIN(origin, __msan_get_origin(&s.a)); EXPECT_ORIGIN(origin, __msan_get_origin(&s.b)); s.b = 42; EXPECT_ORIGIN(origin, __msan_get_origin(&s.a)); EXPECT_ORIGIN(origin, __msan_get_origin(&s.b)); } } // namespace template INLINE void BinaryOpOriginTest(BinaryOp op) { U4 ox = rand(); //NOLINT U4 oy = rand(); //NOLINT T *x = GetPoisonedO(0, ox, 0); T *y = GetPoisonedO(1, oy, 0); T *z = GetPoisonedO(2, 0, 0); *z = op(*x, *y); U4 origin = __msan_get_origin(z); EXPECT_POISONED_O(*z, origin); EXPECT_EQ(true, __msan_origin_is_descendant_or_same(origin, ox) || __msan_origin_is_descendant_or_same(origin, oy)); // y is poisoned, x is not. *x = 10101; *y = *GetPoisonedO(1, oy); break_optimization(x); __msan_set_origin(z, sizeof(*z), 0); *z = op(*x, *y); EXPECT_POISONED_O(*z, oy); EXPECT_ORIGIN(oy, __msan_get_origin(z)); // x is poisoned, y is not. *x = *GetPoisonedO(0, ox); *y = 10101010; break_optimization(y); __msan_set_origin(z, sizeof(*z), 0); *z = op(*x, *y); EXPECT_POISONED_O(*z, ox); EXPECT_ORIGIN(ox, __msan_get_origin(z)); } template INLINE T XOR(const T &a, const T&b) { return a ^ b; } template INLINE T ADD(const T &a, const T&b) { return a + b; } template INLINE T SUB(const T &a, const T&b) { return a - b; } template INLINE T MUL(const T &a, const T&b) { return a * b; } template INLINE T AND(const T &a, const T&b) { return a & b; } template INLINE T OR (const T &a, const T&b) { return a | b; } TEST(MemorySanitizerOrigins, BinaryOp) { if (!TrackingOrigins()) return; BinaryOpOriginTest(XOR); BinaryOpOriginTest(ADD); BinaryOpOriginTest(SUB); BinaryOpOriginTest(MUL); BinaryOpOriginTest(OR); BinaryOpOriginTest(AND); BinaryOpOriginTest(ADD); BinaryOpOriginTest(ADD); BinaryOpOriginTest(ADD); BinaryOpOriginTest(ADD); } TEST(MemorySanitizerOrigins, Unary) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O((void*)*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O((U8)*GetPoisonedO(0, __LINE__), __LINE__); } TEST(MemorySanitizerOrigins, EQ) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) <= 11, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) == 11, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) == 1.1, __LINE__); } TEST(MemorySanitizerOrigins, DIV) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) / 100, __LINE__); unsigned o = __LINE__; EXPECT_UMR_O(volatile unsigned y = 100 / *GetPoisonedO(0, o, 1), o); } TEST(MemorySanitizerOrigins, SHIFT) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) >> 10, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) >> 10, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) << 10, __LINE__); EXPECT_POISONED_O(10U << *GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(-10 >> *GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(-10 << *GetPoisonedO(0, __LINE__), __LINE__); } template void MemCpyTest() { int ox = __LINE__; T *x = new T[N]; T *y = new T[N]; T *z = new T[N]; T *q = new T[N]; __msan_poison(x, N * sizeof(T)); __msan_set_origin(x, N * sizeof(T), ox); __msan_set_origin(y, N * sizeof(T), 777777); __msan_set_origin(z, N * sizeof(T), 888888); EXPECT_NOT_POISONED(x); memcpy(y, x, N * sizeof(T)); EXPECT_POISONED_O(y[0], ox); EXPECT_POISONED_O(y[N/2], ox); EXPECT_POISONED_O(y[N-1], ox); EXPECT_NOT_POISONED(x); #if !defined(__NetBSD__) void *res = mempcpy(q, x, N * sizeof(T)); ASSERT_EQ(q + N, res); EXPECT_POISONED_O(q[0], ox); EXPECT_POISONED_O(q[N/2], ox); EXPECT_POISONED_O(q[N-1], ox); EXPECT_NOT_POISONED(x); #endif memmove(z, x, N * sizeof(T)); EXPECT_POISONED_O(z[0], ox); EXPECT_POISONED_O(z[N/2], ox); EXPECT_POISONED_O(z[N-1], ox); } TEST(MemorySanitizerOrigins, LargeMemCpy) { if (!TrackingOrigins()) return; MemCpyTest(); MemCpyTest(); } TEST(MemorySanitizerOrigins, SmallMemCpy) { if (!TrackingOrigins()) return; MemCpyTest(); MemCpyTest(); MemCpyTest(); } TEST(MemorySanitizerOrigins, Select) { if (!TrackingOrigins()) return; EXPECT_NOT_POISONED(g_one ? 1 : *GetPoisonedO(0, __LINE__)); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); S4 x; break_optimization(&x); x = g_1 ? *GetPoisonedO(0, __LINE__) : 0; EXPECT_POISONED_O(g_1 ? *GetPoisonedO(0, __LINE__) : 1, __LINE__); EXPECT_POISONED_O(g_0 ? 1 : *GetPoisonedO(0, __LINE__), __LINE__); } NOINLINE int RetvalOriginTest(U4 origin) { int *a = new int; break_optimization(a); __msan_set_origin(a, sizeof(*a), origin); int res = *a; delete a; return res; } TEST(MemorySanitizerOrigins, Retval) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__); } NOINLINE void ParamOriginTest(int param, U4 origin) { EXPECT_POISONED_O(param, origin); } TEST(MemorySanitizerOrigins, Param) { if (!TrackingOrigins()) return; int *a = new int; U4 origin = __LINE__; break_optimization(a); __msan_set_origin(a, sizeof(*a), origin); ParamOriginTest(*a, origin); delete a; } TEST(MemorySanitizerOrigins, Invoke) { if (!TrackingOrigins()) return; StructWithDtor s; // Will cause the calls to become invokes. EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__); } TEST(MemorySanitizerOrigins, strlen) { S8 alignment; break_optimization(&alignment); char x[4] = {'a', 'b', 0, 0}; __msan_poison(&x[2], 1); U4 origin = __LINE__; __msan_set_origin(x, sizeof(x), origin); EXPECT_UMR_O(volatile unsigned y = strlen(x), origin); } TEST(MemorySanitizerOrigins, wcslen) { wchar_t w[3] = {'a', 'b', 0}; U4 origin = __LINE__; __msan_set_origin(w, sizeof(w), origin); __msan_poison(&w[2], sizeof(wchar_t)); EXPECT_UMR_O(volatile unsigned y = wcslen(w), origin); } #if MSAN_HAS_M128 TEST(MemorySanitizerOrigins, StoreIntrinsic) { __m128 x, y; U4 origin = __LINE__; __msan_set_origin(&x, sizeof(x), origin); __msan_poison(&x, sizeof(x)); _mm_storeu_ps((float*)&y, x); EXPECT_POISONED_O(y, origin); } #endif NOINLINE void RecursiveMalloc(int depth) { static int count; count++; if ((count % (1024 * 1024)) == 0) printf("RecursiveMalloc: %d\n", count); int *x1 = new int; int *x2 = new int; break_optimization(x1); break_optimization(x2); if (depth > 0) { RecursiveMalloc(depth-1); RecursiveMalloc(depth-1); } delete x1; delete x2; } TEST(MemorySanitizer, Select) { int x; int volatile* p = &x; int z = *p ? 1 : 0; EXPECT_POISONED(z); } TEST(MemorySanitizer, SelectPartial) { // Precise instrumentation of select. // Some bits of the result do not depend on select condition, and must stay // initialized even if select condition is not. These are the bits that are // equal and initialized in both left and right select arguments. U4 x = 0xFFFFABCDU; U4 x_s = 0xFFFF0000U; __msan_partial_poison(&x, &x_s, sizeof(x)); U4 y = 0xAB00U; U1 cond = true; __msan_poison(&cond, sizeof(cond)); U4 z = cond ? x : y; __msan_print_shadow(&z, sizeof(z)); EXPECT_POISONED(z & 0xFFU); EXPECT_NOT_POISONED(z & 0xFF00U); EXPECT_POISONED(z & 0xFF0000U); EXPECT_POISONED(z & 0xFF000000U); EXPECT_EQ(0xAB00U, z & 0xFF00U); } TEST(MemorySanitizerStress, DISABLED_MallocStackTrace) { RecursiveMalloc(22); } TEST(MemorySanitizerAllocator, get_estimated_allocated_size) { size_t sizes[] = {0, 20, 5000, 1<<20}; for (size_t i = 0; i < sizeof(sizes) / sizeof(*sizes); ++i) { size_t alloc_size = __sanitizer_get_estimated_allocated_size(sizes[i]); EXPECT_EQ(alloc_size, sizes[i]); } } TEST(MemorySanitizerAllocator, get_allocated_size_and_ownership) { char *array = reinterpret_cast(malloc(100)); int *int_ptr = new int; EXPECT_TRUE(__sanitizer_get_ownership(array)); EXPECT_EQ(100U, __sanitizer_get_allocated_size(array)); EXPECT_TRUE(__sanitizer_get_ownership(int_ptr)); EXPECT_EQ(sizeof(*int_ptr), __sanitizer_get_allocated_size(int_ptr)); void *wild_addr = reinterpret_cast(0x1); EXPECT_FALSE(__sanitizer_get_ownership(wild_addr)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(wild_addr)); EXPECT_FALSE(__sanitizer_get_ownership(array + 50)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(array + 50)); // NULL is a valid argument for GetAllocatedSize but is not owned. EXPECT_FALSE(__sanitizer_get_ownership(NULL)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL)); free(array); EXPECT_FALSE(__sanitizer_get_ownership(array)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(array)); delete int_ptr; } TEST(MemorySanitizer, MlockTest) { EXPECT_EQ(0, mlockall(MCL_CURRENT)); EXPECT_EQ(0, mlock((void*)0x12345, 0x5678)); EXPECT_EQ(0, munlockall()); EXPECT_EQ(0, munlock((void*)0x987, 0x654)); } // Test that LargeAllocator unpoisons memory before releasing it to the OS. TEST(MemorySanitizer, LargeAllocatorUnpoisonsOnFree) { void *p = malloc(1024 * 1024); free(p); typedef void *(*mmap_fn)(void *, size_t, int, int, int, off_t); mmap_fn real_mmap = (mmap_fn)dlsym(RTLD_NEXT, "mmap"); // Allocate the page that was released to the OS in free() with the real mmap, // bypassing the interceptor. char *q = (char *)real_mmap(p, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ASSERT_NE((char *)0, q); ASSERT_TRUE(q <= p); ASSERT_TRUE(q + 4096 > p); EXPECT_NOT_POISONED(q[0]); EXPECT_NOT_POISONED(q[10]); EXPECT_NOT_POISONED(q[100]); munmap(q, 4096); } #if SANITIZER_TEST_HAS_MALLOC_USABLE_SIZE TEST(MemorySanitizer, MallocUsableSizeTest) { const size_t kArraySize = 100; char *array = Ident((char*)malloc(kArraySize)); int *int_ptr = Ident(new int); EXPECT_EQ(0U, malloc_usable_size(NULL)); EXPECT_EQ(kArraySize, malloc_usable_size(array)); EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr)); free(array); delete int_ptr; } #endif // SANITIZER_TEST_HAS_MALLOC_USABLE_SIZE