/* $NetBSD: dm9000.c,v 1.36 2023/07/07 07:22:18 martin Exp $ */ /* * Copyright (c) 2009 Paul Fleischer * All rights reserved. * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* based on sys/dev/ic/cs89x0.c */ /* * Copyright (c) 2004 Christopher Gilbert * All rights reserved. * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright 1997 * Digital Equipment Corporation. All rights reserved. * * This software is furnished under license and may be used and * copied only in accordance with the following terms and conditions. * Subject to these conditions, you may download, copy, install, * use, modify and distribute this software in source and/or binary * form. No title or ownership is transferred hereby. * * 1) Any source code used, modified or distributed must reproduce * and retain this copyright notice and list of conditions as * they appear in the source file. * * 2) No right is granted to use any trade name, trademark, or logo of * Digital Equipment Corporation. Neither the "Digital Equipment * Corporation" name nor any trademark or logo of Digital Equipment * Corporation may be used to endorse or promote products derived * from this software without the prior written permission of * Digital Equipment Corporation. * * 3) This software is provided "AS-IS" and any express or implied * warranties, including but not limited to, any implied warranties * of merchantability, fitness for a particular purpose, or * non-infringement are disclaimed. In no event shall DIGITAL be * liable for any damages whatsoever, and in particular, DIGITAL * shall not be liable for special, indirect, consequential, or * incidental damages or damages for lost profits, loss of * revenue or loss of use, whether such damages arise in contract, * negligence, tort, under statute, in equity, at law or otherwise, * even if advised of the possibility of such damage. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 1 #undef DM9000_DEBUG #undef DM9000_TX_DEBUG #undef DM9000_TX_DATA_DEBUG #undef DM9000_RX_DEBUG #undef DM9000_RX_DATA_DEBUG #else #define DM9000_DEBUG #define DM9000_TX_DEBUG #define DM9000_TX_DATA_DEBUG #define DM9000_RX_DEBUG #define DM9000_RX_DATA_DEBUG #endif #ifdef DM9000_DEBUG #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) #else #define DPRINTF(s) do {} while (/*CONSTCOND*/0) #endif #ifdef DM9000_TX_DEBUG #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) #else #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0) #endif #ifdef DM9000_RX_DEBUG #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) #else #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0) #endif #ifdef DM9000_RX_DATA_DEBUG #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) #else #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0) #endif #ifdef DM9000_TX_DATA_DEBUG #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) #else #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0) #endif static void dme_reset(struct dme_softc *); static int dme_init(struct ifnet *); static void dme_stop(struct ifnet *, int); static void dme_start(struct ifnet *); static int dme_ioctl(struct ifnet *, u_long, void *); static void dme_set_rcvfilt(struct dme_softc *); static void mii_statchg(struct ifnet *); static void lnkchg(struct dme_softc *); static void phy_tick(void *); static int mii_readreg(device_t, int, int, uint16_t *); static int mii_writereg(device_t, int, int, uint16_t); static void dme_prepare(struct ifnet *); static void dme_transmit(struct ifnet *); static void dme_receive(struct ifnet *); static int pkt_read_2(struct dme_softc *, struct mbuf **); static int pkt_write_2(struct dme_softc *, struct mbuf *); static int pkt_read_1(struct dme_softc *, struct mbuf **); static int pkt_write_1(struct dme_softc *, struct mbuf *); #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m)) #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m)) #define ETHER_IS_ONE(x) \ (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255) #define ETHER_IS_ZERO(x) \ (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0) int dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data *mii = &sc->sc_mii; struct ifmedia *ifm = &mii->mii_media; uint8_t b[2]; uint16_t io_mode; uint8_t enaddr[ETHER_ADDR_LEN]; prop_dictionary_t dict; prop_data_t ea; dme_read_c(sc, DM9000_VID0, b, 2); sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]); dme_read_c(sc, DM9000_PID0, b, 2); sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]); /* TODO: Check the vendor ID as well */ if (sc->sc_product_id != 0x9000) { panic("dme_attach: product id mismatch (0x%hx != 0x9000)", sc->sc_product_id); } #if 1 || DM9000_DEBUG { dme_read_c(sc, DM9000_PAB0, enaddr, 6); aprint_normal_dev(sc->sc_dev, "DM9000 was configured with MAC address: %s\n", ether_sprintf(enaddr)); } #endif dict = device_properties(sc->sc_dev); ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL; if (ea != NULL) { /* * If the MAC address is overridden by a device property, * use that. */ KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN); aprint_debug_dev(sc->sc_dev, "got MAC address!\n"); } else { /* * If we did not get an externaly configure address, * try to read one from the current setup, before * resetting the chip. */ dme_read_c(sc, DM9000_PAB0, enaddr, 6); if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) { /* make a random MAC address */ uint32_t maclo = 0x00f2 | (cprng_strong32() << 16); uint32_t machi = cprng_strong32(); enaddr[0] = maclo; enaddr[1] = maclo >> 8; enaddr[2] = maclo >> 16; enaddr[3] = maclo >> 26; enaddr[4] = machi; enaddr[5] = machi >> 8; } } /* TODO: perform explicit EEPROM read op if it's availble */ dme_reset(sc); mii->mii_ifp = ifp; mii->mii_readreg = mii_readreg; mii->mii_writereg = mii_writereg; mii->mii_statchg = mii_statchg; /* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */ sc->sc_ethercom.ec_mii = mii; ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus); mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_NONE); } else ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); ifm->ifm_media = ifm->ifm_cur->ifm_media; strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; ifp->if_init = dme_init; ifp->if_start = dme_start; ifp->if_stop = dme_stop; ifp->if_ioctl = dme_ioctl; ifp->if_watchdog = NULL; /* no watchdog used */ IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); if_attach(ifp); ether_ifattach(ifp, enaddr); if_deferred_start_init(ifp, NULL); rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); /* might be unnecessary as link change interrupt works well */ callout_init(&sc->sc_link_callout, 0); callout_setfunc(&sc->sc_link_callout, phy_tick, sc); io_mode = (dme_read(sc, DM9000_ISR) & DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT; /* frame body read/write ops in 2 byte quantity or byte-wise. */ DPRINTF(("DM9000 Operation Mode: ")); switch (io_mode) { case DM9000_MODE_8BIT: DPRINTF(("8-bit mode")); sc->sc_data_width = 1; sc->sc_pkt_write = pkt_write_1; sc->sc_pkt_read = pkt_read_1; break; case DM9000_MODE_16BIT: DPRINTF(("16-bit mode")); sc->sc_data_width = 2; sc->sc_pkt_write = pkt_write_2; sc->sc_pkt_read = pkt_read_2; break; case DM9000_MODE_32BIT: DPRINTF(("32-bit mode")); sc->sc_data_width = 4; panic("32bit mode is unsupported\n"); break; default: DPRINTF(("Invalid mode")); break; } DPRINTF(("\n")); return 0; } int dme_detach(struct dme_softc *sc) { return 0; } /* Software Initialize/Reset of the DM9000 */ static void dme_reset(struct dme_softc *sc) { uint8_t misc; /* We only re-initialized the PHY in this function the first time it is * called. */ if (!sc->sc_phy_initialized) { /* PHY Reset */ mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET); /* PHY Power Down */ misc = dme_read(sc, DM9000_GPR); dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF); } /* Reset the DM9000 twice, as described in section 2 of the Programming * Guide. * The PHY is initialized and enabled between those two resets. */ /* Software Reset */ dme_write(sc, DM9000_NCR, DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL); delay(20); dme_write(sc, DM9000_NCR, 0x0); if (!sc->sc_phy_initialized) { /* PHY Enable */ misc = dme_read(sc, DM9000_GPR); dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF); misc = dme_read(sc, DM9000_GPCR); dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT); dme_write(sc, DM9000_NCR, DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL); delay(20); dme_write(sc, DM9000_NCR, 0x0); } /* Select internal PHY, no wakeup event, no collosion mode, * normal loopback mode. */ dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL); /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/ dme_read(sc, DM9000_NSR); /* Enable wraparound of read/write pointer, frame received latch, * and frame transmitted latch. */ dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM); dme_write(sc, DM9000_RCR, DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS); sc->sc_phy_initialized = 1; } static int dme_init(struct ifnet *ifp) { struct dme_softc *sc = ifp->if_softc; dme_stop(ifp, 0); dme_reset(sc); dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); dme_set_rcvfilt(sc); (void)ether_mediachange(ifp); sc->txbusy = sc->txready = 0; ifp->if_flags |= IFF_RUNNING; callout_schedule(&sc->sc_link_callout, hz); return 0; } /* Configure multicast filter */ static void dme_set_rcvfilt(struct dme_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; struct ether_multistep step; uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */ uint32_t h = 0; int rcr; rcr = dme_read(sc, DM9000_RCR); rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL); dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN); ETHER_LOCK(ec); if (ifp->if_flags & IFF_PROMISC) { ec->ec_flags |= ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); /* run promisc. mode */ rcr |= DM9000_RCR_PRMSC; goto update; } ec->ec_flags &= ~ETHER_F_ALLMULTI; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ec->ec_flags |= ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); memset(mchash, 0xff, sizeof(mchash)); /* necessary? */ /* accept all mulicast frame */ rcr |= DM9000_RCR_ALL; goto update; } h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f; /* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */ mchash[h / 8] |= 1 << (h % 8); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); /* DM9000 receive filter is always on */ mchash[7] |= 0x80; /* to catch bcast frame */ update: dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash)); dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN); return; } void lnkchg(struct dme_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ifmediareq ifmr; ether_mediastatus(ifp, &ifmr); } static void mii_statchg(struct ifnet *ifp) { struct dme_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; uint8_t fcr, ncr; #if 0 const uint8_t Mbps[2] = { 10, 100 }; uint8_t nsr = dme_read(sc, DM9000_NSR); int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)]; /* speed/duplexity available also in reg 0x11 of internal PHY */ if (nsr & DM9000_NSR_LINKST) printf("link up,spd%d", spd); else printf("link down"); /* show resolved mii(4) parameters */ printf("MII spd%d", (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1))); if (mii->mii_media_active & IFM_FDX) printf(",full-duplex"); printf("\n"); #endif /* Adjust duplexity and PAUSE flow control. */ fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE; ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX; if ((mii->mii_media_active & IFM_FDX) && (mii->mii_media_active & IFM_FLOW)) { fcr |= DM9000_FCR_FLCE; ncr |= DM9000_NCR_FDX; } dme_write(sc, DM9000_FCR, fcr); dme_write(sc, DM9000_NCR, ncr); } static void phy_tick(void *arg) { struct dme_softc *sc = arg; struct mii_data *mii = &sc->sc_mii; int s; s = splnet(); mii_tick(mii); splx(s); callout_schedule(&sc->sc_link_callout, hz); } static int mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct dme_softc *sc = device_private(self); if (phy != 1) return EINVAL; /* Select Register to read*/ dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY + (reg & DM9000_EPAR_EROA_MASK)); /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */ dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY); /* Wait until access to PHY has completed */ while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE) ; /* Reset ERPRR-bit */ dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY); *val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8); return 0; } static int mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct dme_softc *sc = device_private(self); if (phy != 1) return EINVAL; /* Select Register to write */ dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY + (reg & DM9000_EPAR_EROA_MASK)); /* Write data to the two data registers */ dme_write(sc, DM9000_EPDRL, val & 0xFF); dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF); /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */ dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY); /* Wait until access to PHY has completed */ while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE) ; /* Reset ERPRR-bit */ dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY); return 0; } void dme_stop(struct ifnet *ifp, int disable) { struct dme_softc *sc = ifp->if_softc; /* Not quite sure what to do when called with disable == 0 */ if (disable) { /* Disable RX */ dme_write(sc, DM9000_RCR, 0x0); } mii_down(&sc->sc_mii); callout_stop(&sc->sc_link_callout); ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; } static void dme_start(struct ifnet *ifp) { struct dme_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_RUNNING) == 0) { return; } if (!sc->txready) { dme_prepare(ifp); } if (sc->txbusy) { /* * We need to wait until the current frame has * been transmitted. */ return; } if (sc->txready) { /* We are ready to transmit right away */ dme_transmit(ifp); } dme_prepare(ifp); /* Prepare next one */ } /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */ static void dme_prepare(struct ifnet *ifp) { struct dme_softc *sc = ifp->if_softc; uint16_t length; struct mbuf *m; KASSERT(!sc->txready); IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { TX_DPRINTF(("dme_prepare: Nothing to transmit\n")); return; /* Nothing to transmit */ } /* Element has now been removed from the queue, so we better send it */ bpf_mtap(ifp, m, BPF_D_OUT); /* Setup the DM9000 to accept the writes, and then write each buf in the chain. */ TX_DATA_DPRINTF(("dme_prepare: Writing data: ")); bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD); length = PKT_WRITE(sc, m); bpf_mtap(ifp, m, BPF_D_OUT); TX_DATA_DPRINTF(("\n")); if (length % sc->sc_data_width != 0) panic("dme_prepare: length is not compatible with IO_MODE"); sc->txready_length = length; sc->txready = 1; m_freem(m); } /* Transmit prepared data */ static void dme_transmit(struct ifnet *ifp) { struct dme_softc *sc = ifp->if_softc; TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n", sc->txready, sc->txbusy)); /* prime frame length first */ dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff); dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff); /* read isr next */ dme_read(sc, DM9000_ISR); /* finally issue a request to send */ dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ); sc->txready = 0; sc->txbusy = 1; sc->txready_length = 0; } /* Receive data */ static void dme_receive(struct ifnet *ifp) { struct dme_softc *sc = ifp->if_softc; struct mbuf *m; uint8_t avail, rsr; DPRINTF(("inside dme_receive\n")); /* frame has just arrived, retrieve it */ /* called right after Rx frame available interrupt */ do { /* "no increment" read to get the avail byte without moving past it. */ bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MRCMDX); /* Read twice */ avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); avail &= 03; /* 1:0 we only want these bits */ if (avail == 01) { /* Read with address increment. */ bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MRCMD); rsr = PKT_READ(sc, &m); if (m == NULL) { /* failed to allocate a receive buffer */ RX_DPRINTF(("dme_receive: " "Error allocating buffer\n")); if_statinc(ifp, if_ierrors); continue; } if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) { /* Error while receiving the frame, * discard it and keep track of counters */ RX_DPRINTF(("dme_receive: " "Error reciving frame\n")); if_statinc(ifp, if_ierrors); continue; } if (rsr & DM9000_RSR_LCS) { if_statinc(ifp, if_collisions); continue; } /* pick and forward this frame to ifq */ if_percpuq_enqueue(ifp->if_percpuq, m); } else if (avail != 00) { /* Should this be logged somehow? */ printf("%s: Resetting chip\n", device_xname(sc->sc_dev)); dme_reset(sc); break; } } while (avail == 01); /* frame received successfully */ } int dme_intr(void *arg) { struct dme_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint8_t isr, nsr, tsr; DPRINTF(("dme_intr: Begin\n")); /* Disable interrupts */ dme_write(sc, DM9000_IMR, DM9000_IMR_PAR); isr = dme_read(sc, DM9000_ISR); dme_write(sc, DM9000_ISR, isr); /* write to clear */ if (isr & DM9000_ISR_PRS) { KASSERT(ifp->if_flags & IFF_RUNNING); dme_receive(ifp); } if (isr & DM9000_ISR_LNKCHNG) lnkchg(sc); if (isr & DM9000_ISR_PTS) { tsr = 0x01; /* Initialize to an error value */ /* A frame has been transmitted */ sc->txbusy = 0; nsr = dme_read(sc, DM9000_NSR); if (nsr & DM9000_NSR_TX1END) { tsr = dme_read(sc, DM9000_TSR1); TX_DPRINTF(("dme_intr: Sent using channel 0\n")); } else if (nsr & DM9000_NSR_TX2END) { tsr = dme_read(sc, DM9000_TSR2); TX_DPRINTF(("dme_intr: Sent using channel 1\n")); } if (tsr == 0x0) { /* Frame successfully sent */ if_statinc(ifp, if_opackets); } else { if_statinc(ifp, if_oerrors); } /* If we have nothing ready to transmit, prepare something */ if (!sc->txready) dme_prepare(ifp); if (sc->txready) dme_transmit(ifp); /* Prepare the next frame */ dme_prepare(ifp); if_schedule_deferred_start(ifp); } /* Enable interrupts again */ dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM); DPRINTF(("dme_intr: End\n")); return (isr != 0); } static int dme_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct dme_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifmedia *ifm = &sc->sc_mii.mii_media; int s, error; s = splnet(); switch (cmd) { case SIOCSIFMEDIA: /* Flow control requires full-duplex mode. */ if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || (ifr->ifr_media & IFM_FDX) == 0) ifr->ifr_media &= ~IFM_ETH_FMASK; if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } } error = ifmedia_ioctl(ifp, ifr, ifm, cmd); break; default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd == SIOCSIFCAP) error = if_init(ifp); else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags && IFF_RUNNING) { /* Address list has changed, reconfigure filter */ dme_set_rcvfilt(sc); } break; } splx(s); return error; } static struct mbuf * dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length) { struct dme_softc *sc = ifp->if_softc; struct mbuf *m; int pad, quantum; quantum = sc->sc_data_width; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return NULL; m_set_rcvif(m, ifp); /* Ensure that we always allocate an even number of * bytes in order to avoid writing beyond the buffer */ m->m_pkthdr.len = frame_length + (frame_length % quantum); pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header); /* All our frames have the CRC attached */ m->m_flags |= M_HASFCS; if (m->m_pkthdr.len + pad > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return NULL; } } m->m_data += pad; m->m_len = frame_length + (frame_length % quantum); return m; } static int pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain) { int left_over_count = 0; /* Number of bytes from previous mbuf, which need to be written with the next.*/ uint16_t left_over_buf = 0; int length = 0; struct mbuf *buf; uint8_t *write_ptr; /* We expect that the DM9000 has been setup to accept writes before this function is called. */ for (buf = bufChain; buf != NULL; buf = buf->m_next) { int to_write = buf->m_len; length += to_write; write_ptr = buf->m_data; while (to_write > 0 || (buf->m_next == NULL && left_over_count > 0)) { if (left_over_count > 0) { uint8_t b = 0; DPRINTF(("pkt_write_16: " "Writing left over byte\n")); if (to_write > 0) { b = *write_ptr; to_write--; write_ptr++; DPRINTF(("Took single byte\n")); } else { DPRINTF(("Leftover in last run\n")); length++; } /* Does shift direction depend on endianness? */ left_over_buf = left_over_buf | (b << 8); bus_space_write_2(sc->sc_iot, sc->sc_ioh, sc->dme_data, left_over_buf); TX_DATA_DPRINTF(("%02X ", left_over_buf)); left_over_count = 0; } else if ((long)write_ptr % 2 != 0) { /* Misaligned data */ DPRINTF(("pkt_write_16: " "Detected misaligned data\n")); left_over_buf = *write_ptr; left_over_count = 1; write_ptr++; to_write--; } else { int i; uint16_t *dptr = (uint16_t *)write_ptr; /* A block of aligned data. */ for (i = 0; i < to_write / 2; i++) { /* buf will be half-word aligned * all the time */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, sc->dme_data, *dptr); TX_DATA_DPRINTF(("%02X %02X ", *dptr & 0xFF, (*dptr >> 8) & 0xFF)); dptr++; } write_ptr += i * 2; if (to_write % 2 != 0) { DPRINTF(("pkt_write_16: " "to_write %% 2: %d\n", to_write % 2)); left_over_count = 1; /* XXX: Does this depend on * the endianness? */ left_over_buf = *write_ptr; write_ptr++; to_write--; DPRINTF(("pkt_write_16: " "to_write (after): %d\n", to_write)); DPRINTF(("pkt_write_16: i * 2: %d\n", i*2)); } to_write -= i * 2; } } /* while (...) */ } /* for (...) */ return length; } static int pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint8_t rx_status; struct mbuf *m; uint16_t data; uint16_t frame_length; uint16_t i; uint16_t *buf; data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data); rx_status = data & 0xFF; frame_length = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data); if (frame_length > ETHER_MAX_LEN) { printf("Got frame of length: %d\n", frame_length); printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN); panic("Something is rotten"); } RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n", rx_status, frame_length)); m = dme_alloc_receive_buffer(ifp, frame_length); if (m == NULL) { /* * didn't get a receive buffer, so we read the rest of the * frame, throw it away and return an error */ for (i = 0; i < frame_length; i += 2) { data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data); } *outBuf = NULL; return 0; } buf = mtod(m, uint16_t*); RX_DPRINTF(("dme_receive: ")); for (i = 0; i < frame_length; i += 2) { data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data); if ( (frame_length % 2 != 0) && (i == frame_length - 1) ) { data = data & 0xff; RX_DPRINTF((" L ")); } *buf = data; buf++; RX_DATA_DPRINTF(("%02X %02X ", data & 0xff, (data >> 8) & 0xff)); } RX_DATA_DPRINTF(("\n")); RX_DPRINTF(("Read %d bytes\n", i)); *outBuf = m; return rx_status; } static int pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain) { int length = 0, i; struct mbuf *buf; uint8_t *write_ptr; /* * We expect that the DM9000 has been setup to accept writes before * this function is called. */ for (buf = bufChain; buf != NULL; buf = buf->m_next) { int to_write = buf->m_len; length += to_write; write_ptr = buf->m_data; for (i = 0; i < to_write; i++) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_data, *write_ptr); write_ptr++; } } /* for (...) */ return length; } static int pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint8_t rx_status; struct mbuf *m; uint8_t *buf; uint16_t frame_length; uint16_t i, reg; uint8_t data; reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8; rx_status = reg & 0xFF; reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8; frame_length = reg; if (frame_length > ETHER_MAX_LEN) { printf("Got frame of length: %d\n", frame_length); printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN); panic("Something is rotten"); } RX_DPRINTF(("dme_receive: " "rx_statux: 0x%x, frame_length: %d\n", rx_status, frame_length)); m = dme_alloc_receive_buffer(ifp, frame_length); if (m == NULL) { /* * didn't get a receive buffer, so we read the rest of the * frame, throw it away and return an error */ for (i = 0; i < frame_length; i++ ) { data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data); } *outBuf = NULL; return 0; } buf = mtod(m, uint8_t *); RX_DPRINTF(("dme_receive: ")); for (i = 0; i< frame_length; i += 1) { data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); *buf = data; buf++; RX_DATA_DPRINTF(("%02X ", data)); } RX_DATA_DPRINTF(("\n")); RX_DPRINTF(("Read %d bytes\n", i)); *outBuf = m; return rx_status; }