/* $NetBSD: bcmgenet.c,v 1.14 2022/09/18 17:18:19 thorpej Exp $ */ /*- * Copyright (c) 2020 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Broadcom GENETv5 */ #include "opt_net_mpsafe.h" #include "opt_ddb.h" #include __KERNEL_RCSID(0, "$NetBSD: bcmgenet.c,v 1.14 2022/09/18 17:18:19 thorpej Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CTASSERT(MCLBYTES == 2048); #ifdef GENET_DEBUG #define DPRINTF(...) printf(##__VA_ARGS__) #else #define DPRINTF(...) ((void)0) #endif #ifdef NET_MPSAFE #define GENET_MPSAFE 1 #define CALLOUT_FLAGS CALLOUT_MPSAFE #else #define CALLOUT_FLAGS 0 #endif #define TX_MAX_SEGS 128 #define TX_DESC_COUNT 256 /* GENET_DMA_DESC_COUNT */ #define RX_DESC_COUNT 256 /* GENET_DMA_DESC_COUNT */ #define MII_BUSY_RETRY 1000 #define GENET_MAX_MDF_FILTER 17 #define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT) #define TX_NEXT(n) TX_SKIP(n, 1) #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT) #define GENET_LOCK(sc) mutex_enter(&(sc)->sc_lock) #define GENET_UNLOCK(sc) mutex_exit(&(sc)->sc_lock) #define GENET_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock)) #define GENET_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock) #define GENET_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock) #define GENET_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock)) #define RD4(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define WR4(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) static int genet_mii_readreg(device_t dev, int phy, int reg, uint16_t *val) { struct genet_softc *sc = device_private(dev); int retry; WR4(sc, GENET_MDIO_CMD, GENET_MDIO_READ | GENET_MDIO_START_BUSY | __SHIFTIN(phy, GENET_MDIO_PMD) | __SHIFTIN(reg, GENET_MDIO_REG)); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { if ((RD4(sc, GENET_MDIO_CMD) & GENET_MDIO_START_BUSY) == 0) { *val = RD4(sc, GENET_MDIO_CMD) & 0xffff; break; } delay(10); } if (retry == 0) { device_printf(dev, "phy read timeout, phy=%d reg=%d\n", phy, reg); return ETIMEDOUT; } return 0; } static int genet_mii_writereg(device_t dev, int phy, int reg, uint16_t val) { struct genet_softc *sc = device_private(dev); int retry; WR4(sc, GENET_MDIO_CMD, val | GENET_MDIO_WRITE | GENET_MDIO_START_BUSY | __SHIFTIN(phy, GENET_MDIO_PMD) | __SHIFTIN(reg, GENET_MDIO_REG)); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { if ((RD4(sc, GENET_MDIO_CMD) & GENET_MDIO_START_BUSY) == 0) break; delay(10); } if (retry == 0) { device_printf(dev, "phy write timeout, phy=%d reg=%d\n", phy, reg); return ETIMEDOUT; } return 0; } static void genet_update_link(struct genet_softc *sc) { struct mii_data *mii = &sc->sc_mii; uint32_t val; u_int speed; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) speed = GENET_UMAC_CMD_SPEED_1000; else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) speed = GENET_UMAC_CMD_SPEED_100; else speed = GENET_UMAC_CMD_SPEED_10; val = RD4(sc, GENET_EXT_RGMII_OOB_CTRL); val &= ~GENET_EXT_RGMII_OOB_OOB_DISABLE; val |= GENET_EXT_RGMII_OOB_RGMII_LINK; val |= GENET_EXT_RGMII_OOB_RGMII_MODE_EN; if (sc->sc_phy_mode == GENET_PHY_MODE_RGMII) val |= GENET_EXT_RGMII_OOB_ID_MODE_DISABLE; else val &= ~GENET_EXT_RGMII_OOB_ID_MODE_DISABLE; WR4(sc, GENET_EXT_RGMII_OOB_CTRL, val); val = RD4(sc, GENET_UMAC_CMD); val &= ~GENET_UMAC_CMD_SPEED; val |= __SHIFTIN(speed, GENET_UMAC_CMD_SPEED); WR4(sc, GENET_UMAC_CMD, val); } static void genet_mii_statchg(struct ifnet *ifp) { struct genet_softc * const sc = ifp->if_softc; genet_update_link(sc); } static void genet_setup_txdesc(struct genet_softc *sc, int index, int flags, bus_addr_t paddr, u_int len) { uint32_t status; status = flags | __SHIFTIN(len, GENET_TX_DESC_STATUS_BUFLEN); WR4(sc, GENET_TX_DESC_ADDRESS_LO(index), (uint32_t)paddr); WR4(sc, GENET_TX_DESC_ADDRESS_HI(index), (uint32_t)(paddr >> 32)); WR4(sc, GENET_TX_DESC_STATUS(index), status); } static int genet_setup_txbuf(struct genet_softc *sc, int index, struct mbuf *m) { bus_dma_segment_t *segs; int error, nsegs, cur, i; uint32_t flags; bool nospace; /* at least one descriptor free ? */ if (sc->sc_tx.queued >= TX_DESC_COUNT - 1) return -1; error = bus_dmamap_load_mbuf(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error == EFBIG) { device_printf(sc->sc_dev, "TX packet needs too many DMA segments, dropping...\n"); return -2; } if (error != 0) { device_printf(sc->sc_dev, "TX packet cannot be mapped, retried...\n"); return 0; } segs = sc->sc_tx.buf_map[index].map->dm_segs; nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs; nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs; if (nospace) { bus_dmamap_unload(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map); /* XXX coalesce and retry ? */ return -1; } bus_dmamap_sync(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map, 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* stored in same index as loaded map */ sc->sc_tx.buf_map[index].mbuf = m; flags = GENET_TX_DESC_STATUS_SOP | GENET_TX_DESC_STATUS_CRC | GENET_TX_DESC_STATUS_QTAG; for (cur = index, i = 0; i < nsegs; i++) { if (i == nsegs - 1) flags |= GENET_TX_DESC_STATUS_EOP; genet_setup_txdesc(sc, cur, flags, segs[i].ds_addr, segs[i].ds_len); if (i == 0) flags &= ~GENET_TX_DESC_STATUS_SOP; cur = TX_NEXT(cur); } return nsegs; } static void genet_setup_rxdesc(struct genet_softc *sc, int index, bus_addr_t paddr, bus_size_t len) { WR4(sc, GENET_RX_DESC_ADDRESS_LO(index), (uint32_t)paddr); WR4(sc, GENET_RX_DESC_ADDRESS_HI(index), (uint32_t)(paddr >> 32)); } static int genet_setup_rxbuf(struct genet_softc *sc, int index, struct mbuf *m) { int error; error = bus_dmamap_load_mbuf(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) return error; bus_dmamap_sync(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map, 0, sc->sc_rx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREREAD); sc->sc_rx.buf_map[index].mbuf = m; genet_setup_rxdesc(sc, index, sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr, sc->sc_rx.buf_map[index].map->dm_segs[0].ds_len); return 0; } static struct mbuf * genet_alloc_mbufcl(struct genet_softc *sc) { struct mbuf *m; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return m; } static void genet_enable_intr(struct genet_softc *sc) { WR4(sc, GENET_INTRL2_CPU_CLEAR_MASK, GENET_IRQ_TXDMA_DONE | GENET_IRQ_RXDMA_DONE); } static void genet_disable_intr(struct genet_softc *sc) { /* Disable interrupts */ WR4(sc, GENET_INTRL2_CPU_SET_MASK, 0xffffffff); WR4(sc, GENET_INTRL2_CPU_CLEAR, 0xffffffff); } static void genet_tick(void *softc) { struct genet_softc *sc = softc; struct mii_data *mii = &sc->sc_mii; #ifndef GENET_MPSAFE int s = splnet(); #endif GENET_LOCK(sc); mii_tick(mii); callout_schedule(&sc->sc_stat_ch, hz); GENET_UNLOCK(sc); #ifndef GENET_MPSAFE splx(s); #endif } static void genet_setup_rxfilter_mdf(struct genet_softc *sc, u_int n, const uint8_t *ea) { uint32_t addr0 = (ea[0] << 8) | ea[1]; uint32_t addr1 = (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]; WR4(sc, GENET_UMAC_MDF_ADDR0(n), addr0); WR4(sc, GENET_UMAC_MDF_ADDR1(n), addr1); } static void genet_setup_rxfilter(struct genet_softc *sc) { struct ethercom *ec = &sc->sc_ec; struct ifnet *ifp = &ec->ec_if; struct ether_multistep step; struct ether_multi *enm; uint32_t cmd, mdf_ctrl; u_int n; GENET_ASSERT_LOCKED(sc); ETHER_LOCK(ec); cmd = RD4(sc, GENET_UMAC_CMD); /* * Count the required number of hardware filters. We need one * for each multicast address, plus one for our own address and * the broadcast address. */ ETHER_FIRST_MULTI(step, ec, enm); for (n = 2; enm != NULL; n++) ETHER_NEXT_MULTI(step, enm); if (n > GENET_MAX_MDF_FILTER) ifp->if_flags |= IFF_ALLMULTI; else ifp->if_flags &= ~IFF_ALLMULTI; if ((ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0) { cmd |= GENET_UMAC_CMD_PROMISC; mdf_ctrl = 0; } else { cmd &= ~GENET_UMAC_CMD_PROMISC; genet_setup_rxfilter_mdf(sc, 0, ifp->if_broadcastaddr); genet_setup_rxfilter_mdf(sc, 1, CLLADDR(ifp->if_sadl)); ETHER_FIRST_MULTI(step, ec, enm); for (n = 2; enm != NULL; n++) { genet_setup_rxfilter_mdf(sc, n, enm->enm_addrlo); ETHER_NEXT_MULTI(step, enm); } mdf_ctrl = __BITS(GENET_MAX_MDF_FILTER - 1, GENET_MAX_MDF_FILTER - n); } WR4(sc, GENET_UMAC_CMD, cmd); WR4(sc, GENET_UMAC_MDF_CTRL, mdf_ctrl); ETHER_UNLOCK(ec); } static int genet_reset(struct genet_softc *sc) { uint32_t val; val = RD4(sc, GENET_SYS_RBUF_FLUSH_CTRL); val |= GENET_SYS_RBUF_FLUSH_RESET; WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, val); delay(10); val &= ~GENET_SYS_RBUF_FLUSH_RESET; WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, val); delay(10); WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, 0); delay(10); WR4(sc, GENET_UMAC_CMD, 0); WR4(sc, GENET_UMAC_CMD, GENET_UMAC_CMD_LCL_LOOP_EN | GENET_UMAC_CMD_SW_RESET); delay(10); WR4(sc, GENET_UMAC_CMD, 0); WR4(sc, GENET_UMAC_MIB_CTRL, GENET_UMAC_MIB_RESET_RUNT | GENET_UMAC_MIB_RESET_RX | GENET_UMAC_MIB_RESET_TX); WR4(sc, GENET_UMAC_MIB_CTRL, 0); WR4(sc, GENET_UMAC_MAX_FRAME_LEN, 1536); val = RD4(sc, GENET_RBUF_CTRL); val |= GENET_RBUF_ALIGN_2B; WR4(sc, GENET_RBUF_CTRL, val); WR4(sc, GENET_RBUF_TBUF_SIZE_CTRL, 1); return 0; } static void genet_set_rxthresh(struct genet_softc *sc, int qid, int usecs, int count) { int ticks; uint32_t val; /* convert to 125MHz/1024 ticks */ ticks = howmany(usecs * 125, 1024); if (count < 1) count = 1; if (count > GENET_INTR_THRESHOLD_MASK) count = GENET_INTR_THRESHOLD_MASK; if (ticks < 0) ticks = 0; if (ticks > GENET_DMA_RING_TIMEOUT_MASK) ticks = GENET_DMA_RING_TIMEOUT_MASK; WR4(sc, GENET_RX_DMA_MBUF_DONE_THRES(qid), count); val = RD4(sc, GENET_RX_DMA_RING_TIMEOUT(qid)); val &= ~GENET_DMA_RING_TIMEOUT_MASK; val |= ticks; WR4(sc, GENET_RX_DMA_RING_TIMEOUT(qid), val); } static void genet_set_txthresh(struct genet_softc *sc, int qid, int count) { if (count < 1) count = 1; if (count > GENET_INTR_THRESHOLD_MASK) count = GENET_INTR_THRESHOLD_MASK; WR4(sc, GENET_TX_DMA_MBUF_DONE_THRES(qid), count); } static void genet_init_rings(struct genet_softc *sc, int qid) { uint32_t val; /* TX ring */ sc->sc_tx.queued = 0; sc->sc_tx.cidx = sc->sc_tx.pidx = 0; WR4(sc, GENET_TX_SCB_BURST_SIZE, 0x08); WR4(sc, GENET_TX_DMA_READ_PTR_LO(qid), 0); WR4(sc, GENET_TX_DMA_READ_PTR_HI(qid), 0); WR4(sc, GENET_TX_DMA_CONS_INDEX(qid), 0); WR4(sc, GENET_TX_DMA_PROD_INDEX(qid), 0); WR4(sc, GENET_TX_DMA_RING_BUF_SIZE(qid), __SHIFTIN(TX_DESC_COUNT, GENET_TX_DMA_RING_BUF_SIZE_DESC_COUNT) | __SHIFTIN(MCLBYTES, GENET_TX_DMA_RING_BUF_SIZE_BUF_LENGTH)); WR4(sc, GENET_TX_DMA_START_ADDR_LO(qid), 0); WR4(sc, GENET_TX_DMA_START_ADDR_HI(qid), 0); WR4(sc, GENET_TX_DMA_END_ADDR_LO(qid), TX_DESC_COUNT * GENET_DMA_DESC_SIZE / 4 - 1); WR4(sc, GENET_TX_DMA_END_ADDR_HI(qid), 0); WR4(sc, GENET_TX_DMA_FLOW_PERIOD(qid), 0); WR4(sc, GENET_TX_DMA_WRITE_PTR_LO(qid), 0); WR4(sc, GENET_TX_DMA_WRITE_PTR_HI(qid), 0); /* interrupt after 10 packets or when ring empty */ genet_set_txthresh(sc, qid, 10); WR4(sc, GENET_TX_DMA_RING_CFG, __BIT(qid)); /* enable */ /* Enable transmit DMA */ val = RD4(sc, GENET_TX_DMA_CTRL); val |= GENET_TX_DMA_CTRL_EN; val |= GENET_TX_DMA_CTRL_RBUF_EN(GENET_DMA_DEFAULT_QUEUE); WR4(sc, GENET_TX_DMA_CTRL, val); /* RX ring */ sc->sc_rx.cidx = sc->sc_rx.pidx = 0; WR4(sc, GENET_RX_SCB_BURST_SIZE, 0x08); WR4(sc, GENET_RX_DMA_WRITE_PTR_LO(qid), 0); WR4(sc, GENET_RX_DMA_WRITE_PTR_HI(qid), 0); WR4(sc, GENET_RX_DMA_PROD_INDEX(qid), 0); WR4(sc, GENET_RX_DMA_CONS_INDEX(qid), 0); WR4(sc, GENET_RX_DMA_RING_BUF_SIZE(qid), __SHIFTIN(RX_DESC_COUNT, GENET_RX_DMA_RING_BUF_SIZE_DESC_COUNT) | __SHIFTIN(MCLBYTES, GENET_RX_DMA_RING_BUF_SIZE_BUF_LENGTH)); WR4(sc, GENET_RX_DMA_START_ADDR_LO(qid), 0); WR4(sc, GENET_RX_DMA_START_ADDR_HI(qid), 0); WR4(sc, GENET_RX_DMA_END_ADDR_LO(qid), RX_DESC_COUNT * GENET_DMA_DESC_SIZE / 4 - 1); WR4(sc, GENET_RX_DMA_END_ADDR_HI(qid), 0); WR4(sc, GENET_RX_DMA_XON_XOFF_THRES(qid), __SHIFTIN(5, GENET_RX_DMA_XON_XOFF_THRES_LO) | __SHIFTIN(RX_DESC_COUNT >> 4, GENET_RX_DMA_XON_XOFF_THRES_HI)); WR4(sc, GENET_RX_DMA_READ_PTR_LO(qid), 0); WR4(sc, GENET_RX_DMA_READ_PTR_HI(qid), 0); /* * interrupt on first packet, * mitigation timeout timeout 57 us (~84 minimal packets at 1Gbit/s) */ genet_set_rxthresh(sc, qid, 57, 10); WR4(sc, GENET_RX_DMA_RING_CFG, __BIT(qid)); /* enable */ /* Enable receive DMA */ val = RD4(sc, GENET_RX_DMA_CTRL); val |= GENET_RX_DMA_CTRL_EN; val |= GENET_RX_DMA_CTRL_RBUF_EN(GENET_DMA_DEFAULT_QUEUE); WR4(sc, GENET_RX_DMA_CTRL, val); } static int genet_init_locked(struct genet_softc *sc) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct mii_data *mii = &sc->sc_mii; uint32_t val; const uint8_t *enaddr = CLLADDR(ifp->if_sadl); GENET_ASSERT_LOCKED(sc); GENET_ASSERT_TXLOCKED(sc); if ((ifp->if_flags & IFF_RUNNING) != 0) return 0; if (sc->sc_phy_mode == GENET_PHY_MODE_RGMII || sc->sc_phy_mode == GENET_PHY_MODE_RGMII_ID || sc->sc_phy_mode == GENET_PHY_MODE_RGMII_RXID || sc->sc_phy_mode == GENET_PHY_MODE_RGMII_TXID) WR4(sc, GENET_SYS_PORT_CTRL, GENET_SYS_PORT_MODE_EXT_GPHY); else WR4(sc, GENET_SYS_PORT_CTRL, 0); /* Write hardware address */ val = enaddr[3] | (enaddr[2] << 8) | (enaddr[1] << 16) | (enaddr[0] << 24); WR4(sc, GENET_UMAC_MAC0, val); val = enaddr[5] | (enaddr[4] << 8); WR4(sc, GENET_UMAC_MAC1, val); /* Setup RX filter */ genet_setup_rxfilter(sc); /* Setup TX/RX rings */ genet_init_rings(sc, GENET_DMA_DEFAULT_QUEUE); /* Enable transmitter and receiver */ val = RD4(sc, GENET_UMAC_CMD); val |= GENET_UMAC_CMD_TXEN; val |= GENET_UMAC_CMD_RXEN; WR4(sc, GENET_UMAC_CMD, val); /* Enable interrupts */ genet_enable_intr(sc); ifp->if_flags |= IFF_RUNNING; mii_mediachg(mii); callout_schedule(&sc->sc_stat_ch, hz); return 0; } static int genet_init(struct ifnet *ifp) { struct genet_softc *sc = ifp->if_softc; int error; GENET_LOCK(sc); GENET_TXLOCK(sc); error = genet_init_locked(sc); GENET_TXUNLOCK(sc); GENET_UNLOCK(sc); return error; } static void genet_stop_locked(struct genet_softc *sc, int disable) { struct ifnet *ifp = &sc->sc_ec.ec_if; uint32_t val; GENET_ASSERT_LOCKED(sc); callout_stop(&sc->sc_stat_ch); mii_down(&sc->sc_mii); /* Disable receiver */ val = RD4(sc, GENET_UMAC_CMD); val &= ~GENET_UMAC_CMD_RXEN; WR4(sc, GENET_UMAC_CMD, val); /* Stop receive DMA */ val = RD4(sc, GENET_RX_DMA_CTRL); val &= ~GENET_RX_DMA_CTRL_EN; WR4(sc, GENET_RX_DMA_CTRL, val); /* Stop transmit DMA */ val = RD4(sc, GENET_TX_DMA_CTRL); val &= ~GENET_TX_DMA_CTRL_EN; WR4(sc, GENET_TX_DMA_CTRL, val); /* Flush data in the TX FIFO */ WR4(sc, GENET_UMAC_TX_FLUSH, 1); delay(10); WR4(sc, GENET_UMAC_TX_FLUSH, 0); /* Disable transmitter */ val = RD4(sc, GENET_UMAC_CMD); val &= ~GENET_UMAC_CMD_TXEN; WR4(sc, GENET_UMAC_CMD, val); /* Disable interrupts */ genet_disable_intr(sc); ifp->if_flags &= ~IFF_RUNNING; } static void genet_stop(struct ifnet *ifp, int disable) { struct genet_softc * const sc = ifp->if_softc; GENET_LOCK(sc); genet_stop_locked(sc, disable); GENET_UNLOCK(sc); } static void genet_rxintr(struct genet_softc *sc, int qid) { struct ifnet *ifp = &sc->sc_ec.ec_if; int error, index, len, n; struct mbuf *m, *m0; uint32_t status, pidx, total; int pkts = 0; pidx = RD4(sc, GENET_RX_DMA_PROD_INDEX(qid)) & 0xffff; total = (pidx - sc->sc_rx.cidx) & 0xffff; DPRINTF("RX pidx=%08x total=%d\n", pidx, total); index = sc->sc_rx.cidx % RX_DESC_COUNT; for (n = 0; n < total; n++) { status = RD4(sc, GENET_RX_DESC_STATUS(index)); if (status & GENET_RX_DESC_STATUS_ALL_ERRS) { if (status & GENET_RX_DESC_STATUS_OVRUN_ERR) device_printf(sc->sc_dev, "overrun\n"); if (status & GENET_RX_DESC_STATUS_CRC_ERR) device_printf(sc->sc_dev, "CRC error\n"); if (status & GENET_RX_DESC_STATUS_RX_ERR) device_printf(sc->sc_dev, "receive error\n"); if (status & GENET_RX_DESC_STATUS_FRAME_ERR) device_printf(sc->sc_dev, "frame error\n"); if (status & GENET_RX_DESC_STATUS_LEN_ERR) device_printf(sc->sc_dev, "length error\n"); if_statinc(ifp, if_ierrors); goto next; } if (status & GENET_RX_DESC_STATUS_OWN) device_printf(sc->sc_dev, "OWN %d of %d\n",n,total); len = __SHIFTOUT(status, GENET_RX_DESC_STATUS_BUFLEN); if (len < ETHER_ALIGN) { if_statinc(ifp, if_ierrors); goto next; } m = sc->sc_rx.buf_map[index].mbuf; if ((m0 = genet_alloc_mbufcl(sc)) == NULL) { if_statinc(ifp, if_ierrors); goto next; } /* unload map before it gets loaded in setup_rxbuf */ if (sc->sc_rx.buf_map[index].map->dm_mapsize > 0) { bus_dmamap_sync(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map, 0, sc->sc_rx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_POSTREAD); } bus_dmamap_unload(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map); sc->sc_rx.buf_map[index].mbuf = NULL; error = genet_setup_rxbuf(sc, index, m0); if (error != 0) { m_freem(m0); if_statinc(ifp, if_ierrors); /* XXX mbuf is unloaded but load failed */ m_freem(m); device_printf(sc->sc_dev, "cannot load RX mbuf. panic?\n"); goto next; } DPRINTF("RX [#%d] index=%02x status=%08x len=%d adj_len=%d\n", n, index, status, len, len - ETHER_ALIGN); m_set_rcvif(m, ifp); m->m_len = m->m_pkthdr.len = len; m_adj(m, ETHER_ALIGN); if_percpuq_enqueue(ifp->if_percpuq, m); ++pkts; next: index = RX_NEXT(index); sc->sc_rx.cidx = (sc->sc_rx.cidx + 1) & 0xffff; WR4(sc, GENET_RX_DMA_CONS_INDEX(qid), sc->sc_rx.cidx); } if (pkts != 0) rnd_add_uint32(&sc->sc_rndsource, pkts); } static void genet_txintr(struct genet_softc *sc, int qid) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct genet_bufmap *bmap; int cidx, i, pkts = 0; cidx = RD4(sc, GENET_TX_DMA_CONS_INDEX(qid)) & 0xffff; i = sc->sc_tx.cidx % TX_DESC_COUNT; while (sc->sc_tx.cidx != cidx) { bmap = &sc->sc_tx.buf_map[i]; if (bmap->mbuf != NULL) { /* XXX first segment already unloads */ if (bmap->map->dm_mapsize > 0) { bus_dmamap_sync(sc->sc_tx.buf_tag, bmap->map, 0, bmap->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); } bus_dmamap_unload(sc->sc_tx.buf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; ++pkts; } i = TX_NEXT(i); sc->sc_tx.cidx = (sc->sc_tx.cidx + 1) & 0xffff; } if_statadd(ifp, if_opackets, pkts); if (pkts != 0) rnd_add_uint32(&sc->sc_rndsource, pkts); } static void genet_start_locked(struct genet_softc *sc) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct mbuf *m; int nsegs, index, cnt; GENET_ASSERT_TXLOCKED(sc); if ((ifp->if_flags & IFF_RUNNING) == 0) return; const int qid = GENET_DMA_DEFAULT_QUEUE; index = sc->sc_tx.pidx % TX_DESC_COUNT; cnt = 0; sc->sc_tx.queued = (RD4(sc, GENET_TX_DMA_PROD_INDEX(qid)) - RD4(sc, GENET_TX_DMA_CONS_INDEX(qid))) & 0xffff; for (;;) { IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; nsegs = genet_setup_txbuf(sc, index, m); if (nsegs <= 0) { if (nsegs == -2) { IFQ_DEQUEUE(&ifp->if_snd, m); m_freem(m); continue; } break; } IFQ_DEQUEUE(&ifp->if_snd, m); bpf_mtap(ifp, m, BPF_D_OUT); index = TX_SKIP(index, nsegs); sc->sc_tx.queued += nsegs; sc->sc_tx.pidx = (sc->sc_tx.pidx + nsegs) & 0xffff; cnt++; } if (cnt != 0) WR4(sc, GENET_TX_DMA_PROD_INDEX(qid), sc->sc_tx.pidx); } static void genet_start(struct ifnet *ifp) { struct genet_softc *sc = ifp->if_softc; GENET_TXLOCK(sc); genet_start_locked(sc); GENET_TXUNLOCK(sc); } int genet_intr(void *arg) { struct genet_softc *sc = arg; struct ifnet *ifp = &sc->sc_ec.ec_if; uint32_t val; bool dotx = false; val = RD4(sc, GENET_INTRL2_CPU_STAT); val &= ~RD4(sc, GENET_INTRL2_CPU_STAT_MASK); WR4(sc, GENET_INTRL2_CPU_CLEAR, val); if (val & GENET_IRQ_RXDMA_DONE) { GENET_LOCK(sc); genet_rxintr(sc, GENET_DMA_DEFAULT_QUEUE); GENET_UNLOCK(sc); } if (val & GENET_IRQ_TXDMA_DONE) { genet_txintr(sc, GENET_DMA_DEFAULT_QUEUE); dotx = true; } if (dotx) if_schedule_deferred_start(ifp); return 1; } static int genet_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct genet_softc *sc = ifp->if_softc; int error, s; #ifndef GENET_MPSAFE s = splnet(); #endif switch (cmd) { default: #ifdef GENET_MPSAFE s = splnet(); #endif error = ether_ioctl(ifp, cmd, data); #ifdef GENET_MPSAFE splx(s); #endif if (error != ENETRESET) break; error = 0; if (cmd == SIOCSIFCAP) error = if_init(ifp); else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if ((ifp->if_flags & IFF_RUNNING) != 0) { GENET_LOCK(sc); genet_setup_rxfilter(sc); GENET_UNLOCK(sc); } break; } #ifndef GENET_MPSAFE splx(s); #endif return error; } static void genet_get_eaddr(struct genet_softc *sc, uint8_t *eaddr) { prop_dictionary_t prop = device_properties(sc->sc_dev); uint32_t maclo, machi, val; prop_data_t eaprop; eaprop = prop_dictionary_get(prop, "mac-address"); if (eaprop != NULL) { KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA); KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN); memcpy(eaddr, prop_data_value(eaprop), ETHER_ADDR_LEN); return; } maclo = machi = 0; val = RD4(sc, GENET_SYS_RBUF_FLUSH_CTRL); if ((val & GENET_SYS_RBUF_FLUSH_RESET) == 0) { maclo = htobe32(RD4(sc, GENET_UMAC_MAC0)); machi = htobe16(RD4(sc, GENET_UMAC_MAC1) & 0xffff); } if (maclo == 0 && machi == 0) { /* Create one */ maclo = 0x00f2 | (cprng_strong32() & 0xffff0000); machi = cprng_strong32() & 0xffff; } eaddr[0] = maclo & 0xff; eaddr[1] = (maclo >> 8) & 0xff; eaddr[2] = (maclo >> 16) & 0xff; eaddr[3] = (maclo >> 24) & 0xff; eaddr[4] = machi & 0xff; eaddr[5] = (machi >> 8) & 0xff; } static int genet_setup_dma(struct genet_softc *sc, int qid) { struct mbuf *m; int error, i; /* Setup TX ring */ sc->sc_tx.buf_tag = sc->sc_dmat; for (i = 0; i < TX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->sc_tx.buf_tag, MCLBYTES, TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK, &sc->sc_tx.buf_map[i].map); if (error != 0) { device_printf(sc->sc_dev, "cannot create TX buffer map\n"); return error; } } /* Setup RX ring */ sc->sc_rx.buf_tag = sc->sc_dmat; for (i = 0; i < RX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->sc_rx.buf_tag, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_WAITOK, &sc->sc_rx.buf_map[i].map); if (error != 0) { device_printf(sc->sc_dev, "cannot create RX buffer map\n"); return error; } if ((m = genet_alloc_mbufcl(sc)) == NULL) { device_printf(sc->sc_dev, "cannot allocate RX mbuf\n"); return ENOMEM; } error = genet_setup_rxbuf(sc, i, m); if (error != 0) { device_printf(sc->sc_dev, "cannot create RX buffer\n"); return error; } } return 0; } int genet_attach(struct genet_softc *sc) { struct mii_data *mii = &sc->sc_mii; struct ifnet *ifp = &sc->sc_ec.ec_if; uint8_t eaddr[ETHER_ADDR_LEN]; u_int maj, min; int mii_flags = 0; const uint32_t rev = RD4(sc, GENET_SYS_REV_CTRL); min = __SHIFTOUT(rev, SYS_REV_MINOR); maj = __SHIFTOUT(rev, SYS_REV_MAJOR); if (maj == 0) maj++; else if (maj == 5 || maj == 6) maj--; if (maj != 5) { aprint_error(": GENETv%d.%d not supported\n", maj, min); return ENXIO; } switch (sc->sc_phy_mode) { case GENET_PHY_MODE_RGMII_TXID: mii_flags |= MIIF_TXID; break; case GENET_PHY_MODE_RGMII_RXID: mii_flags |= MIIF_RXID; break; case GENET_PHY_MODE_RGMII_ID: mii_flags |= MIIF_RXID | MIIF_TXID; break; case GENET_PHY_MODE_RGMII: default: break; } aprint_naive("\n"); aprint_normal(": GENETv%d.%d\n", maj, min); mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET); mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET); callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS); callout_setfunc(&sc->sc_stat_ch, genet_tick, sc); genet_get_eaddr(sc, eaddr); aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr)); /* Soft reset EMAC core */ genet_reset(sc); /* Setup DMA descriptors */ if (genet_setup_dma(sc, GENET_DMA_DEFAULT_QUEUE) != 0) { aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n"); return EINVAL; } /* Setup ethernet interface */ ifp->if_softc = sc; snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; #ifdef GENET_MPSAFE ifp->if_extflags = IFEF_MPSAFE; #endif ifp->if_start = genet_start; ifp->if_ioctl = genet_ioctl; ifp->if_init = genet_init; ifp->if_stop = genet_stop; ifp->if_capabilities = 0; ifp->if_capenable = ifp->if_capabilities; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); /* 802.1Q VLAN-sized frames are supported */ sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; /* Attach MII driver */ sc->sc_ec.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); mii->mii_ifp = ifp; mii->mii_readreg = genet_mii_readreg; mii->mii_writereg = genet_mii_writereg; mii->mii_statchg = genet_mii_statchg; mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY, mii_flags); if (LIST_EMPTY(&mii->mii_phys)) { aprint_error_dev(sc->sc_dev, "no PHY found!\n"); return ENOENT; } ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* Attach interface */ if_attach(ifp); if_deferred_start_init(ifp, NULL); /* Attach ethernet interface */ ether_ifattach(ifp, eaddr); rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET, RND_FLAG_DEFAULT); return 0; } #ifdef DDB void genet_debug(void); void genet_debug(void) { device_t dev = device_find_by_xname("genet0"); if (dev == NULL) return; struct genet_softc * const sc = device_private(dev); const int qid = GENET_DMA_DEFAULT_QUEUE; printf("TX CIDX = %08x (soft)\n", sc->sc_tx.cidx); printf("TX CIDX = %08x\n", RD4(sc, GENET_TX_DMA_CONS_INDEX(qid))); printf("TX PIDX = %08x (soft)\n", sc->sc_tx.pidx); printf("TX PIDX = %08x\n", RD4(sc, GENET_TX_DMA_PROD_INDEX(qid))); printf("RX CIDX = %08x (soft)\n", sc->sc_rx.cidx); printf("RX CIDX = %08x\n", RD4(sc, GENET_RX_DMA_CONS_INDEX(qid))); printf("RX PIDX = %08x (soft)\n", sc->sc_rx.pidx); printf("RX PIDX = %08x\n", RD4(sc, GENET_RX_DMA_PROD_INDEX(qid))); } #endif