/* $NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 */ /* * FPU subroutines: `implode' internal format numbers into the machine's * `packed binary' format. */ #include __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $"); #include #include #include #include #include #include #include #include #include static int round(struct fpemu *, struct fpn *, int *); static int toinf(struct fpemu *, int); static int round_int(struct fpn *, int *, int, int, int); static u_int fpu_ftoi(struct fpemu *, struct fpn *, int *, int); static uint64_t fpu_ftox(struct fpemu *, struct fpn *, int *, int); static u_int fpu_ftos(struct fpemu *, struct fpn *, int *); static uint64_t fpu_ftod(struct fpemu *, struct fpn *, int *); /* * Round a number (algorithm from Motorola MC68882 manual, modified for * our internal format). Set inexact exception if rounding is required. * Return true iff we rounded up. * * After rounding, we discard the guard and round bits by shifting right * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). * This saves effort later. * * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's * responsibility to fix this if necessary. */ static int round(struct fpemu *fe, struct fpn *fp, int *cx) { u_int m0, m1, m2, m3; int gr, s; FPU_DECL_CARRY; m0 = fp->fp_mant[0]; m1 = fp->fp_mant[1]; m2 = fp->fp_mant[2]; m3 = fp->fp_mant[3]; gr = m3 & 3; s = fp->fp_sticky; /* mant >>= FP_NG */ m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); m0 >>= FP_NG; if ((gr | s) == 0) /* result is exact: no rounding needed */ goto rounddown; *cx |= FPSCR_FI; /* inexact */ /* Go to rounddown to round down; break to round up. */ switch ((fe->fe_fpscr) & FPSCR_RN) { case FSR_RD_RN: default: /* * Round only if guard is set (gr & 2). If guard is set, * but round & sticky both clear, then we want to round * but have a tie, so round to even, i.e., add 1 iff odd. */ if ((gr & 2) == 0) goto rounddown; if ((gr & 1) || fp->fp_sticky || (m3 & 1)) break; goto rounddown; case FSR_RD_RZ: /* Round towards zero, i.e., down. */ goto rounddown; case FSR_RD_RM: /* Round towards -Inf: up if negative, down if positive. */ if (fp->fp_sign) break; goto rounddown; case FSR_RD_RP: /* Round towards +Inf: up if positive, down otherwise. */ if (!fp->fp_sign) break; goto rounddown; } /* Bump low bit of mantissa, with carry. */ *cx |= FPSCR_FR; FPU_ADDS(m3, m3, 1); FPU_ADDCS(m2, m2, 0); FPU_ADDCS(m1, m1, 0); FPU_ADDC(m0, m0, 0); fp->fp_mant[0] = m0; fp->fp_mant[1] = m1; fp->fp_mant[2] = m2; fp->fp_mant[3] = m3; return (1); rounddown: fp->fp_mant[0] = m0; fp->fp_mant[1] = m1; fp->fp_mant[2] = m2; fp->fp_mant[3] = m3; return (0); } /* * For overflow: return true if overflow is to go to +/-Inf, according * to the sign of the overflowing result. If false, overflow is to go * to the largest magnitude value instead. */ static int toinf(struct fpemu *fe, int sign) { int inf; /* look at rounding direction */ switch ((fe->fe_fpscr) & FPSCR_RN) { default: case FSR_RD_RN: /* the nearest value is always Inf */ inf = 1; break; case FSR_RD_RZ: /* toward 0 => never towards Inf */ inf = 0; break; case FSR_RD_RP: /* toward +Inf iff positive */ inf = sign == 0; break; case FSR_RD_RM: /* toward -Inf iff negative */ inf = sign; break; } return (inf); } static int round_int(struct fpn *fp, int *cx, int rn, int sign, int odd) { int g, rs; g = fp->fp_mant[3] & 0x80000000; rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky; if ((g | rs) == 0) return 0; /* exact */ *cx |= FPSCR_FI; switch (rn) { case FSR_RD_RN: if (g && (rs | odd)) break; return 0; case FSR_RD_RZ: return 0; case FSR_RD_RP: if (!sign) break; return 0; case FSR_RD_RM: if (sign) break; return 0; } *cx |= FPSCR_FR; return 1; } /* * fpn -> int (int value returned as return value). */ static u_int fpu_ftoi(struct fpemu *fe, struct fpn *fp, int *cx, int rn) { u_int i; int sign, exp, tmp_cx; sign = fp->fp_sign; switch (fp->fp_class) { case FPC_SNAN: *cx |= FPSCR_VXSNAN; /* FALLTHROUGH */ case FPC_QNAN: sign = 1; break; case FPC_ZERO: return (0); case FPC_NUM: /* * If exp >= 2^32, overflow. Otherwise shift value right * into last mantissa word (this will not exceed 0xffffffff), * shifting any guard and round bits out into the sticky * bit. Then ``round'' towards zero, i.e., just set an * inexact exception if sticky is set (see round()). * If the result is > 0x80000000, or is positive and equals * 0x80000000, overflow; otherwise the last fraction word * is the result. */ if ((exp = fp->fp_exp) >= 32) break; /* NB: the following includes exp < 0 cases */ (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp); i = fp->fp_mant[2]; tmp_cx = 0; i += round_int(fp, &tmp_cx, rn, sign, i & 1); if (i >= ((u_int)0x80000000 + sign)) break; *cx |= tmp_cx; return (sign ? -i : i); case FPC_INF: break; } /* overflow: replace any inexact exception with invalid */ *cx |= FPSCR_VXCVI; return (0x7fffffff + sign); } /* * fpn -> extended int (high bits of int value returned as return value). */ static uint64_t fpu_ftox(struct fpemu *fe, struct fpn *fp, int *cx, int rn) { uint64_t i; int sign, exp, tmp_cx; sign = fp->fp_sign; switch (fp->fp_class) { case FPC_SNAN: *cx |= FPSCR_VXSNAN; /* FALLTHROUGH */ case FPC_QNAN: sign = 1; break; case FPC_ZERO: return (0); case FPC_NUM: /* * If exp >= 2^64, overflow. Otherwise shift value right * into last mantissa word (this will not exceed 0xffffffffffffffff), * shifting any guard and round bits out into the sticky * bit. Then ``round'' towards zero, i.e., just set an * inexact exception if sticky is set (see round()). * If the result is > 0x8000000000000000, or is positive and equals * 0x8000000000000000, overflow; otherwise the last fraction word * is the result. */ if ((exp = fp->fp_exp) >= 64) break; /* NB: the following includes exp < 0 cases */ (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp); i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2]; tmp_cx = 0; i += round_int(fp, &tmp_cx, rn, sign, i & 1); if (i >= ((uint64_t)0x8000000000000000LL + sign)) break; *cx |= tmp_cx; return (sign ? -i : i); case FPC_INF: break; } /* overflow: replace any inexact exception with invalid */ *cx |= FPSCR_VXCVI; return (0x7fffffffffffffffLL + sign); } #define FPRF_SIGN(sign) ((sign) ? FPSCR_FL : FPSCR_FG) /* * fpn -> single (32 bit single returned as return value). * We assume <= 29 bits in a single-precision fraction (1.f part). */ static u_int fpu_ftos(struct fpemu *fe, struct fpn *fp, int *cx) { u_int sign = fp->fp_sign << 31; int exp; #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ /* Take care of non-numbers first. */ if (ISNAN(fp)) { *cx |= FPSCR_C | FPSCR_FU; /* * Preserve upper bits of NaN, per SPARC V8 appendix N. * Note that fp->fp_mant[0] has the quiet bit set, * even if it is classified as a signalling NaN. */ (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); exp = SNG_EXP_INFNAN; goto done; } if (ISINF(fp)) { *cx |= FPRF_SIGN(sign) | FPSCR_FU; return (sign | SNG_EXP(SNG_EXP_INFNAN)); } if (ISZERO(fp)) { *cx |= FPSCR_FE; if (sign) *cx |= FPSCR_C; return (sign); } /* * Normals (including subnormals). Drop all the fraction bits * (including the explicit ``implied'' 1 bit) down into the * single-precision range. If the number is subnormal, move * the ``implied'' 1 into the explicit range as well, and shift * right to introduce leading zeroes. Rounding then acts * differently for normals and subnormals: the largest subnormal * may round to the smallest normal (1.0 x 2^minexp), or may * remain subnormal. In the latter case, signal an underflow * if the result was inexact or if underflow traps are enabled. * * Rounding a normal, on the other hand, always produces another * normal (although either way the result might be too big for * single precision, and cause an overflow). If rounding a * normal produces 2.0 in the fraction, we need not adjust that * fraction at all, since both 1.0 and 2.0 are zero under the * fraction mask. * * Note that the guard and round bits vanish from the number after * rounding. */ if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(1)) { *cx |= FPRF_SIGN(sign); return (sign | SNG_EXP(1) | 0); } if (*cx & FPSCR_FI) { *cx |= FPSCR_UX; if (fp->fp_mant[3] == 0) { *cx |= FPSCR_FE; return sign; } } *cx |= FPSCR_C | FPRF_SIGN(sign); return (sign | SNG_EXP(0) | fp->fp_mant[3]); } /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); #ifdef DIAGNOSTIC if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) panic("fpu_ftos"); #endif if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(2)) exp++; if (exp >= SNG_EXP_INFNAN) { *cx |= FPSCR_OX | FPSCR_FI; /* overflow to inf or to max single */ if (toinf(fe, sign)) { *cx |= FPRF_SIGN(sign) | FPSCR_FU; return (sign | SNG_EXP(SNG_EXP_INFNAN)); } *cx |= FPRF_SIGN(sign); return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); } *cx |= FPRF_SIGN(sign); done: /* phew, made it */ return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); } /* * fpn -> double. Assumes <= 61 bits in double precision fraction. * * This code mimics fpu_ftos; see it for comments. */ static uint64_t fpu_ftod(struct fpemu *fe, struct fpn *fp, int *cx) { u_int sign = fp->fp_sign << 31; int exp; #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) #define DBL_MASK (DBL_EXP(1) - 1) #define HI_WORD(i) ((uint64_t)(i) << 32) #define LO_WORD(i) ((uint32_t)(i)) if (ISNAN(fp)) { *cx |= FPSCR_C | FPSCR_FU; (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); exp = DBL_EXP_INFNAN; goto done; } if (ISINF(fp)) { *cx |= FPRF_SIGN(sign) | FPSCR_FU; return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN)); } if (ISZERO(fp)) { *cx |= FPSCR_FE; if (sign) *cx |= FPSCR_C; return HI_WORD(sign); } if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(1)) { *cx |= FPRF_SIGN(sign); return HI_WORD(sign | DBL_EXP(1) | 0); } if (*cx & FPSCR_FI) { *cx |= FPSCR_UX; if ((fp->fp_mant[2] & DBL_MASK) == 0 && fp->fp_mant[3] == 0) { *cx |= FPSCR_FE; return HI_WORD(sign); } } *cx |= FPSCR_C | FPRF_SIGN(sign); exp = 0; goto done; } (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(2)) exp++; if (exp >= DBL_EXP_INFNAN) { *cx |= FPSCR_OX | FPSCR_FI; /* overflow to inf or to max double */ if (toinf(fe, sign)) { *cx |= FPRF_SIGN(sign) | FPSCR_FU; return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN) | 0); } *cx |= FPRF_SIGN(sign); return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN - 1) | DBL_MASK) | LO_WORD(~0); } *cx |= FPRF_SIGN(sign); done: return HI_WORD(sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)) | LO_WORD(fp->fp_mant[3]); } /* * Implode an fpn, writing the result into the given space. */ void fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint64_t *p) { u_int *hi, *lo; int cx, rn; bool fpscr; hi = (u_int *)p; lo = hi + 1; if (type & FTYPE_RD_RZ) rn = FSR_RD_RZ; else rn = fe->fe_fpscr & FPSCR_RN; fpscr = type & FTYPE_FPSCR; type &= ~FTYPE_FLAG_MASK; cx = 0; switch (type) { case FTYPE_LNG: /* FPRF is undefined. */ *p = fpu_ftox(fe, fp, &cx, rn); DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", *hi, *lo)); break; case FTYPE_INT: /* FPRF is undefined. */ *hi = 0; *lo = fpu_ftoi(fe, fp, &cx, rn); DPRINTF(FPE_REG, ("fpu_implode: int %x\n", *lo)); break; case FTYPE_SNG: *hi = fpu_ftos(fe, fp, &cx); *lo = 0; DPRINTF(FPE_REG, ("fpu_implode: single %x\n", *hi)); break; case FTYPE_DBL: *p = fpu_ftod(fe, fp, &cx); DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", *hi, *lo)); break; default: panic("fpu_implode: invalid type %d", type); } if (fpscr) { fe->fe_fpscr &= ~(FPSCR_FR | FPSCR_FI | FPSCR_FPRF); fe->fe_cx |= cx; if (cx & FPSCR_FI) fe->fe_cx |= FPSCR_XX; } }