/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The original code, FreeBSD's old svn r93211, contain the following * attribution: * * This code by P. McIlroy, Oct 1992; * * The financial support of UUNET Communications Services is greatfully * acknowledged. * * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl. */ #include /* * See bsdsrc/t_tgamma.c for implementation details. */ #include #if LDBL_MAX_EXP != 0x4000 #error "Unsupported long double format" #endif #include "math.h" #include "math_private.h" /* Used in b_log.c and below. */ struct LDouble { long double a; long double b; }; #include "b_logl.c" #include "b_expl.c" static const double zero = 0.; static const volatile double tiny = 1e-300; /* * x >= 6 * * Use the asymptotic approximation (Stirling's formula) adjusted for * equal-ripples: * * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x)) * * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid * premature round-off. * * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. */ /* * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo. The * variables are clearly misnamed. */ static const union ieee_ext_u ln2pi_hiu = LD80C(0xd680000000000000, -2, 4.18945312500000000000e-01L), ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L); #define ln2pi_hi (ln2pi_hiu.extu_ld) #define ln2pi_lo (ln2pi_lou.extu_ld) static const union ieee_ext_u Pa0u = LD80C(0xaaaaaaaaaaaaaaaa, -4, 8.33333333333333333288e-02L), Pa1u = LD80C(0xb60b60b60b5fcd59, -9, -2.77777777777776516326e-03L), Pa2u = LD80C(0xd00d00cffbb47014, -11, 7.93650793635429639018e-04L), Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L), Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11, 8.41749082509607342883e-04L), Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L), Pa6u = LD80C(0xd15a4ba04078d3f8, -8, 6.38893788027752396194e-03L), Pa7u = LD80C(0xe877283110bcad95, -6, -2.83771309846297590312e-02L), Pa8u = LD80C(0x8da97eed13717af8, -3, 1.38341887683837576925e-01L), Pa9u = LD80C(0xf093b1c1584e30ce, -2, -4.69876818515470146031e-01L); #define Pa0 (Pa0u.extu_ld) #define Pa1 (Pa1u.extu_ld) #define Pa2 (Pa2u.extu_ld) #define Pa3 (Pa3u.extu_ld) #define Pa4 (Pa4u.extu_ld) #define Pa5 (Pa5u.extu_ld) #define Pa6 (Pa6u.extu_ld) #define Pa7 (Pa7u.extu_ld) #define Pa8 (Pa8u.extu_ld) #define Pa9 (Pa9u.extu_ld) static struct LDouble large_gam(long double x) { long double p, z, thi, tlo, xhi, xlo; struct LDouble u; z = 1 / (x * x); p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 + z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9)))))))); p = p / x; u = __log__LD(x); u.a -= 1; /* Split (x - 0.5) in high and low parts. */ x -= 0.5L; xhi = (float)x; xlo = x - xhi; /* Compute t = (x-.5)*(log(x)-1) in extra precision. */ thi = xhi * u.a; tlo = xlo * u.a + x * u.b; /* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */ tlo += ln2pi_lo; tlo += p; u.a = ln2pi_hi + tlo; u.a += thi; u.b = thi - u.a; u.b += ln2pi_hi; u.b += tlo; return (u); } /* * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval * [1.066.., 2.066..] accurate to 4.25e-19. * * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated. */ static const union ieee_ext_u a0_hiu = LD80C(0xe2b6e4153a57746c, -1, 8.85603194410888700265e-01L), a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L); #define a0_hi (a0_hiu.extu_ld) #define a0_lo (a0_lou.extu_ld) static const union ieee_ext_u P0u = LD80C(0xdb629fb9bbdc1c1d, -2, 4.28486815855585429733e-01L), P1u = LD80C(0xe6f4f9f5641aa6be, -3, 2.25543885805587730552e-01L), P2u = LD80C(0xead1bd99fdaf7cc1, -6, 2.86644652514293482381e-02L), P3u = LD80C(0x9ccc8b25838ab1e0, -8, 4.78512567772456362048e-03L), P4u = LD80C(0x8f0c4383ef9ce72a, -9, 2.18273781132301146458e-03L), P5u = LD80C(0xe732ab2c0a2778da, -13, 2.20487522485636008928e-04L), P6u = LD80C(0xce70b27ca822b297, -16, 2.46095923774929264284e-05L), P7u = LD80C(0xa309e2e16fb63663, -19, 2.42946473022376182921e-06L), P8u = LD80C(0xaf9c110efb2c633d, -23, 1.63549217667765869987e-07L), Q1u = LD80C(0xd4d7422719f48f15, -1, 8.31409582658993993626e-01L), Q2u = LD80C(0xe13138ea404f1268, -5, -5.49785826915643198508e-02L), Q3u = LD80C(0xd1c6cc91989352c0, -4, -1.02429960435139887683e-01L), Q4u = LD80C(0xa7e9435a84445579, -7, 1.02484853505908820524e-02L), Q5u = LD80C(0x83c7c34db89b7bda, -8, 4.02161632832052872697e-03L), Q6u = LD80C(0xbed06bf6e1c14e5b, -11, -7.27898206351223022157e-04L), Q7u = LD80C(0xef05bf841d4504c0, -18, 7.12342421869453515194e-06L), Q8u = LD80C(0xf348d08a1ff53cb1, -19, 3.62522053809474067060e-06L); #define P0 (P0u.extu_ld) #define P1 (P1u.extu_ld) #define P2 (P2u.extu_ld) #define P3 (P3u.extu_ld) #define P4 (P4u.extu_ld) #define P5 (P5u.extu_ld) #define P6 (P6u.extu_ld) #define P7 (P7u.extu_ld) #define P8 (P8u.extu_ld) #define Q1 (Q1u.extu_ld) #define Q2 (Q2u.extu_ld) #define Q3 (Q3u.extu_ld) #define Q4 (Q4u.extu_ld) #define Q5 (Q5u.extu_ld) #define Q6 (Q6u.extu_ld) #define Q7 (Q7u.extu_ld) #define Q8 (Q8u.extu_ld) static struct LDouble ratfun_gam(long double z, long double c) { long double p, q, thi, tlo; struct LDouble r; q = 1 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 + z * (Q6 + z * (Q7 + z * Q8))))))); p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * (P6 + z * (P7 + z * P8))))))); p = p / q; /* Split z into high and low parts. */ thi = (float)z; tlo = (z - thi) + c; tlo *= (thi + z); /* Split (z+c)^2 into high and low parts. */ thi *= thi; q = thi; thi = (float)thi; tlo += (q - thi); /* Split p/q into high and low parts. */ r.a = (float)p; r.b = p - r.a; tlo = tlo * p + thi * r.b + a0_lo; thi *= r.a; /* t = (z+c)^2*(P/Q) */ r.a = (float)(thi + a0_hi); r.b = ((a0_hi - r.a) + thi) + tlo; return (r); /* r = a0 + t */ } /* * x < 6 * * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124, * 2.066124]. Use a rational approximation centered at the minimum * (x0+1) to ensure monotonicity. * * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) * It also has correct monotonicity. */ static const union ieee_ext_u xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L); #define x0 (xm1u.extu_ld) static const double left = -0.3955078125; /* left boundary for rat. approx */ static long double small_gam(long double x) { long double t, y, ym1; struct LDouble yy, r; y = x - 1; if (y <= 1 + (left + x0)) { yy = ratfun_gam(y - x0, 0); return (yy.a + yy.b); } r.a = (float)y; yy.a = r.a - 1; y = y - 1 ; r.b = yy.b = y - yy.a; /* Argument reduction: G(x+1) = x*G(x) */ for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) { t = r.a * yy.a; r.b = r.a * yy.b + y * r.b; r.a = (float)t; r.b += (t - r.a); } /* Return r*tgamma(y). */ yy = ratfun_gam(y - x0, 0); y = r.b * (yy.a + yy.b) + r.a * yy.b; y += yy.a * r.a; return (y); } /* * Good on (0, 1+x0+left]. Accurate to 1 ulp. */ static long double smaller_gam(long double x) { long double d, t, xhi, xlo; struct LDouble r; if (x < x0 + left) { t = (float)x; d = (t + x) * (x - t); t *= t; xhi = (float)(t + x); xlo = x - xhi; xlo += t; xlo += d; t = 1 - x0; t += x; d = 1 - x0; d -= t; d += x; x = xhi + xlo; } else { xhi = (float)x; xlo = x - xhi; t = x - x0; d = - x0 - t; d += x; } r = ratfun_gam(t, d); d = (float)(r.a / x); r.a -= d * xhi; r.a -= d * xlo; r.a += r.b; return (d + r.a / x); } /* * x < 0 * * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)). * At negative integers, return NaN and raise invalid. */ static const union ieee_ext_u piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L); #define pi (piu.extu_ld) static long double neg_gam(long double x) { int sgn = 1; long double y, z; y = ceill(x); if (y == x) /* Negative integer. */ return ((x - x) / zero); z = y - x; if (z > 0.5) z = 1 - z; y = y / 2; if (y == ceill(y)) sgn = -1; if (z < 0.25) z = sinpil(z); else z = cospil(0.5 - z); /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ if (x < -1753) { if (x < -1760) return (sgn * tiny * tiny); y = expl(lgammal(x) / 2); y *= y; return (sgn < 0 ? -y : y); } y = 1 - x; if (1 - y == x) y = tgammal(y); else /* 1-x is inexact */ y = - x * tgammal(-x); if (sgn < 0) y = -y; return (pi / (y * z)); } /* * xmax comes from lgamma(xmax) - emax * log(2) = 0. * static const float xmax = 35.040095f * static const double xmax = 171.624376956302725; * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L), * ld128: 1.75554834290446291700388921607020320e+03L, * * iota is a sloppy threshold to isolate x = 0. */ static const double xmax = 1755.54834290446291689; static const double iota = 0x1p-116; long double tgammal(long double x) { struct LDouble u; ENTERI(); if (x >= 6) { if (x > xmax) RETURNI(x / zero); u = large_gam(x); RETURNI(__exp__LD(u.a, u.b)); } if (x >= 1 + left + x0) RETURNI(small_gam(x)); if (x > iota) RETURNI(smaller_gam(x)); if (x > -iota) { if (x != 0) u.a = 1 - tiny; /* raise inexact */ RETURNI(1 / x); } if (!isfinite(x)) RETURNI(x - x); /* x is NaN or -Inf */ RETURNI(neg_gam(x)); }