// SPDX-FileCopyrightText: 2012 Mathieu Desnoyers // // SPDX-License-Identifier: LGPL-2.1-or-later #ifndef _URCU_TLS_COMPAT_H #define _URCU_TLS_COMPAT_H /* * Userspace RCU library - Thread-Local Storage Compatibility Header */ #include #include #include #include #ifdef __cplusplus extern "C" { #endif #ifdef CONFIG_RCU_TLS /* * Default to '__thread' on all C and C++ compilers except MSVC. While C11 has * '_Thread_local' and C++11 has 'thread_local', only '__thread' seems to have * a compatible implementation when linking public extern symbols across * language boundaries. * * For more details, see 'https://gcc.gnu.org/onlinedocs/gcc/Thread-Local.html'. */ #if defined(_MSC_VER) # define URCU_TLS_STORAGE_CLASS __declspec(thread) #else # define URCU_TLS_STORAGE_CLASS __thread #endif /* * Hint: How to define/declare TLS variables of compound types * such as array or function pointers? * * Answer: Use typedef to assign a type_name to the compound type. * Example: Define a TLS variable which is an int array with len=4: * * typedef int my_int_array_type[4]; * DEFINE_URCU_TLS(my_int_array_type, var_name); * * Another example: * typedef void (*call_rcu_flavor)(struct rcu_head *, XXXX); * DECLARE_URCU_TLS(call_rcu_flavor, p_call_rcu); * * NOTE: URCU_TLS() is NOT async-signal-safe, you can't use it * inside any function which can be called from signal handler. * * But if pthread_getspecific() is async-signal-safe in your * platform, you can make URCU_TLS() async-signal-safe via: * ensuring the first call to URCU_TLS() of a given TLS variable of * all threads is called earliest from a non-signal handler function. * * Example: In any thread, the first call of URCU_TLS(rcu_reader) * is called from rcu_register_thread(), so we can ensure all later * URCU_TLS(rcu_reader) in any thread is async-signal-safe. * * Moreover, URCU_TLS variables should not be touched from signal * handlers setup with with sigaltstack(2). */ # define DECLARE_URCU_TLS(type, name) \ URCU_TLS_STORAGE_CLASS type name # define DEFINE_URCU_TLS(type, name) \ URCU_TLS_STORAGE_CLASS type name # define DEFINE_URCU_TLS_INIT(type, name, init) \ URCU_TLS_STORAGE_CLASS type name = (init) # define URCU_TLS(name) (name) #else /* #ifndef CONFIG_RCU_TLS */ /* * The *_1() macros ensure macro parameters are expanded. */ # include struct urcu_tls { pthread_key_t key; pthread_mutex_t init_mutex; int init_done; }; # define DECLARE_URCU_TLS_1(type, name) \ type *__tls_access_ ## name(void) # define DECLARE_URCU_TLS(type, name) \ DECLARE_URCU_TLS_1(type, name) /* * Note: we don't free memory at process exit, since it will be dealt * with by the OS. */ # define DEFINE_URCU_TLS_INIT_1(type, name, do_init) \ type *__tls_access_ ## name(void) \ { \ static struct urcu_tls __tls_ ## name = { \ .key = 0, \ .init_mutex = PTHREAD_MUTEX_INITIALIZER,\ .init_done = 0, \ }; \ __typeof__(type) *__tls_p; \ if (!__tls_ ## name.init_done) { \ /* Mutex to protect concurrent init */ \ pthread_mutex_lock(&__tls_ ## name.init_mutex); \ if (!__tls_ ## name.init_done) { \ (void) pthread_key_create(&__tls_ ## name.key, \ free); \ cmm_smp_wmb(); /* create key before write init_done */ \ __tls_ ## name.init_done = 1; \ } \ pthread_mutex_unlock(&__tls_ ## name.init_mutex); \ } \ cmm_smp_rmb(); /* read init_done before getting key */ \ __tls_p = (__typeof__(type) *) pthread_getspecific(__tls_ ## name.key); \ if (caa_unlikely(__tls_p == NULL)) { \ __tls_p = (__typeof__(type) *) calloc(1, sizeof(type)); \ do_init \ (void) pthread_setspecific(__tls_ ## name.key, \ __tls_p); \ } \ return __tls_p; \ } # define _URCU_TLS_INIT(init) \ *__tls_p = (init); # define DEFINE_URCU_TLS_INIT(type, name, init) \ DEFINE_URCU_TLS_INIT_1(type, name, _URCU_TLS_INIT(init)) # define DEFINE_URCU_TLS(type, name) \ DEFINE_URCU_TLS_INIT_1(type, name, /* empty */) # define URCU_TLS_1(name) (*__tls_access_ ## name()) # define URCU_TLS(name) URCU_TLS_1(name) #endif /* #else #ifndef CONFIG_RCU_TLS */ #ifdef __cplusplus } #endif #endif /* _URCU_TLS_COMPAT_H */