/* Warn on problematic uses of alloca and variable length arrays. Copyright (C) 2016-2022 Free Software Foundation, Inc. Contributed by Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "diagnostic-core.h" #include "fold-const.h" #include "gimple-iterator.h" #include "tree-ssa.h" #include "tree-cfg.h" #include "builtins.h" #include "calls.h" #include "cfgloop.h" #include "intl.h" #include "gimple-range.h" static unsigned HOST_WIDE_INT adjusted_warn_limit (bool); const pass_data pass_data_walloca = { GIMPLE_PASS, "walloca", OPTGROUP_NONE, TV_NONE, PROP_cfg, // properties_required 0, // properties_provided 0, // properties_destroyed 0, // properties_start 0, // properties_finish }; class pass_walloca : public gimple_opt_pass { public: pass_walloca (gcc::context *ctxt) : gimple_opt_pass(pass_data_walloca, ctxt), xlimit_certain_p (false) {} opt_pass *clone () { return new pass_walloca (m_ctxt); } void set_pass_param (unsigned int n, bool param) { gcc_assert (n == 0); // Set to true to enable only warnings for alloca calls that // are certainly in excess of the limit. This includes calls // with constant arguments but excludes those in ranges (that // can only be determined by range analysis) as well as // the "may be too large" kind. xlimit_certain_p = param; } virtual bool gate (function *); virtual unsigned int execute (function *); private: // Set to TRUE the first time we run this pass on a function. bool xlimit_certain_p; }; bool pass_walloca::gate (function *fun ATTRIBUTE_UNUSED) { // Warning is disabled when its size limit is greater than PTRDIFF_MAX // for the target maximum, which makes the limit negative since when // represented in signed HOST_WIDE_INT. unsigned HOST_WIDE_INT max = tree_to_uhwi (TYPE_MAX_VALUE (ptrdiff_type_node)); return (adjusted_warn_limit (false) <= max || adjusted_warn_limit (true) <= max); } // Possible problematic uses of alloca. enum alloca_type { // Alloca argument is within known bounds that are appropriate. ALLOCA_OK, // Alloca argument is KNOWN to have a value that is too large. ALLOCA_BOUND_DEFINITELY_LARGE, // Alloca argument may be too large. ALLOCA_BOUND_MAYBE_LARGE, // Alloca appears in a loop. ALLOCA_IN_LOOP, // Alloca argument is 0. ALLOCA_ARG_IS_ZERO, // Alloca call is unbounded. That is, there is no controlling // predicate for its argument. ALLOCA_UNBOUNDED }; // Type of an alloca call with its corresponding limit, if applicable. class alloca_type_and_limit { public: enum alloca_type type; // For ALLOCA_BOUND_MAYBE_LARGE and ALLOCA_BOUND_DEFINITELY_LARGE // types, this field indicates the assumed limit if known or // integer_zero_node if unknown. For any other alloca types, this // field is undefined. wide_int limit; alloca_type_and_limit (); alloca_type_and_limit (enum alloca_type type, wide_int i) : type(type), limit(i) { } alloca_type_and_limit (enum alloca_type type) : type(type) { limit = wi::to_wide (integer_zero_node); } }; /* Return TRUE if the user specified a limit for either VLAs or ALLOCAs. */ static bool warn_limit_specified_p (bool is_vla) { unsigned HOST_WIDE_INT max = is_vla ? warn_vla_limit : warn_alloca_limit; return max != HOST_WIDE_INT_MAX; } /* Return the value of the argument N to -Walloca-larger-than= or -Wvla-larger-than= adjusted for the target data model so that when N == HOST_WIDE_INT_MAX, the adjusted value is set to PTRDIFF_MAX on the target. This is done to prevent warnings for unknown/unbounded allocations in the "permissive mode" while still diagnosing excessive and necessarily invalid allocations. */ static unsigned HOST_WIDE_INT adjusted_warn_limit (bool idx) { static HOST_WIDE_INT limits[2]; if (limits[idx]) return limits[idx]; limits[idx] = idx ? warn_vla_limit : warn_alloca_limit; if (limits[idx] != HOST_WIDE_INT_MAX) return limits[idx]; limits[idx] = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node)); return limits[idx]; } // Analyze the alloca call in STMT and return the alloca type with its // corresponding limit (if applicable). IS_VLA is set if the alloca // call was created by the gimplifier for a VLA. static class alloca_type_and_limit alloca_call_type (gimple *stmt, bool is_vla) { gcc_assert (gimple_alloca_call_p (stmt)); tree len = gimple_call_arg (stmt, 0); gcc_assert (!is_vla || warn_vla_limit >= 0); gcc_assert (is_vla || warn_alloca_limit >= 0); // Adjust warn_alloca_max_size for VLAs, by taking the underlying // type into account. unsigned HOST_WIDE_INT max_size = adjusted_warn_limit (is_vla); // Check for the obviously bounded case. if (TREE_CODE (len) == INTEGER_CST) { if (tree_to_uhwi (len) > max_size) return alloca_type_and_limit (ALLOCA_BOUND_DEFINITELY_LARGE, wi::to_wide (len)); if (integer_zerop (len)) { const offset_int maxobjsize = wi::to_offset (max_object_size ()); alloca_type result = (max_size < maxobjsize ? ALLOCA_ARG_IS_ZERO : ALLOCA_OK); return alloca_type_and_limit (result); } return alloca_type_and_limit (ALLOCA_OK); } struct alloca_type_and_limit ret = alloca_type_and_limit (ALLOCA_OK); // If we have a declared maximum size, we can take it into account. if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX)) { tree arg = gimple_call_arg (stmt, 2); if (compare_tree_int (arg, max_size) <= 0) ret = alloca_type_and_limit (ALLOCA_OK); else { const offset_int maxobjsize = wi::to_offset (max_object_size ()); alloca_type result = (max_size < maxobjsize ? ALLOCA_BOUND_MAYBE_LARGE : ALLOCA_OK); ret = alloca_type_and_limit (result, wi::to_wide (arg)); } return ret; } // If the user specified a limit, use it. int_range_max r; if (warn_limit_specified_p (is_vla) && TREE_CODE (len) == SSA_NAME && types_compatible_p (TREE_TYPE (len), size_type_node) && get_range_query (cfun)->range_of_expr (r, len, stmt) && !r.varying_p ()) { // The invalid bits are anything outside of [0, MAX_SIZE]. int_range<2> invalid_range (build_int_cst (size_type_node, 0), build_int_cst (size_type_node, max_size), VR_ANTI_RANGE); r.intersect (invalid_range); if (r.undefined_p ()) return alloca_type_and_limit (ALLOCA_OK); return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, wi::to_wide (integer_zero_node)); } const offset_int maxobjsize = tree_to_shwi (max_object_size ()); /* When MAX_SIZE is greater than or equal to PTRDIFF_MAX treat allocations that aren't visibly constrained as OK, otherwise report them as (potentially) unbounded. */ alloca_type unbounded_result = (max_size < maxobjsize.to_uhwi () ? ALLOCA_UNBOUNDED : ALLOCA_OK); return alloca_type_and_limit (unbounded_result); } // Return TRUE if STMT is in a loop, otherwise return FALSE. static bool in_loop_p (gimple *stmt) { basic_block bb = gimple_bb (stmt); return bb->loop_father && bb->loop_father->header != ENTRY_BLOCK_PTR_FOR_FN (cfun); } unsigned int pass_walloca::execute (function *fun) { gimple_ranger *ranger = enable_ranger (fun); basic_block bb; FOR_EACH_BB_FN (bb, fun) { for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple *stmt = gsi_stmt (si); if (!gimple_alloca_call_p (stmt)) continue; location_t loc = gimple_nonartificial_location (stmt); loc = expansion_point_location_if_in_system_header (loc); const bool is_vla = gimple_call_alloca_for_var_p (as_a (stmt)); // Strict mode whining for VLAs is handled by the front-end, // so we can safely ignore this case. Also, ignore VLAs if // the user doesn't care about them. if (is_vla) { if (warn_vla > 0 || warn_vla_limit < 0) continue; } else if (warn_alloca) { warning_at (loc, OPT_Walloca, "use of %"); continue; } else if (warn_alloca_limit < 0) continue; class alloca_type_and_limit t = alloca_call_type (stmt, is_vla); unsigned HOST_WIDE_INT adjusted_alloca_limit = adjusted_warn_limit (false); // Even if we think the alloca call is OK, make sure it's not in a // loop, except for a VLA, since VLAs are guaranteed to be cleaned // up when they go out of scope, including in a loop. if (t.type == ALLOCA_OK && !is_vla && in_loop_p (stmt)) { /* As in other instances, only diagnose this when the limit is less than the maximum valid object size. */ const offset_int maxobjsize = wi::to_offset (max_object_size ()); if (adjusted_alloca_limit < maxobjsize.to_uhwi ()) t = alloca_type_and_limit (ALLOCA_IN_LOOP); } enum opt_code wcode = is_vla ? OPT_Wvla_larger_than_ : OPT_Walloca_larger_than_; char buff[WIDE_INT_MAX_PRECISION / 4 + 4]; switch (t.type) { case ALLOCA_OK: break; case ALLOCA_BOUND_MAYBE_LARGE: { if (xlimit_certain_p) break; auto_diagnostic_group d; if (warning_at (loc, wcode, (is_vla ? G_("argument to variable-length " "array may be too large") : G_("argument to % may be too " "large"))) && t.limit != 0) { print_decu (t.limit, buff); inform (loc, "limit is %wu bytes, but argument " "may be as large as %s", is_vla ? warn_vla_limit : adjusted_alloca_limit, buff); } } break; case ALLOCA_BOUND_DEFINITELY_LARGE: { auto_diagnostic_group d; if (warning_at (loc, wcode, (is_vla ? G_("argument to variable-length" " array is too large") : G_("argument to % is too large"))) && t.limit != 0) { print_decu (t.limit, buff); inform (loc, "limit is %wu bytes, but argument is %s", is_vla ? warn_vla_limit : adjusted_alloca_limit, buff); } } break; case ALLOCA_UNBOUNDED: if (xlimit_certain_p) break; warning_at (loc, wcode, (is_vla ? G_("unbounded use of variable-length array") : G_("unbounded use of %"))); break; case ALLOCA_IN_LOOP: gcc_assert (!is_vla); warning_at (loc, wcode, "use of % within a loop"); break; case ALLOCA_ARG_IS_ZERO: warning_at (loc, wcode, (is_vla ? G_("argument to variable-length array " "is zero") : G_("argument to % is zero"))); break; default: gcc_unreachable (); } } } ranger->export_global_ranges (); disable_ranger (fun); return 0; } gimple_opt_pass * make_pass_walloca (gcc::context *ctxt) { return new pass_walloca (ctxt); }