/* Header file for gimple range GORI structures. Copyright (C) 2017-2022 Free Software Foundation, Inc. Contributed by Andrew MacLeod and Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_GIMPLE_RANGE_GORI_H #define GCC_GIMPLE_RANGE_GORI_H // RANGE_DEF_CHAIN is used to determine which SSA names in a block can // have range information calculated for them, and what the // dependencies on each other are. class range_def_chain { public: range_def_chain (); ~range_def_chain (); tree depend1 (tree name) const; tree depend2 (tree name) const; bool in_chain_p (tree name, tree def); bool chain_import_p (tree name, tree import); void register_dependency (tree name, tree ssa1, basic_block bb = NULL); void dump (FILE *f, basic_block bb, const char *prefix = NULL); protected: bool has_def_chain (tree name); bool def_chain_in_bitmap_p (tree name, bitmap b); void add_def_chain_to_bitmap (bitmap b, tree name); bitmap get_def_chain (tree name); bitmap get_imports (tree name); bitmap_obstack m_bitmaps; private: struct rdc { tree ssa1; // First direct dependency tree ssa2; // Second direct dependency bitmap bm; // All dependencies bitmap m_import; }; vec m_def_chain; // SSA_NAME : def chain components. void set_import (struct rdc &data, tree imp, bitmap b); int m_logical_depth; }; // Return the first direct dependency for NAME, if there is one. // Direct dependencies are those which occur on the defintion statement. // Only the first 2 such names are cached. inline tree range_def_chain::depend1 (tree name) const { unsigned v = SSA_NAME_VERSION (name); if (v >= m_def_chain.length ()) return NULL_TREE; return m_def_chain[v].ssa1; } // Return the second direct dependency for NAME, if there is one. inline tree range_def_chain::depend2 (tree name) const { unsigned v = SSA_NAME_VERSION (name); if (v >= m_def_chain.length ()) return NULL_TREE; return m_def_chain[v].ssa2; } // GORI_MAP is used to accumulate what SSA names in a block can // generate range information, and provides tools for the block ranger // to enable it to efficiently calculate these ranges. class gori_map : public range_def_chain { public: gori_map (); ~gori_map (); bool is_export_p (tree name, basic_block bb = NULL); bool is_import_p (tree name, basic_block bb); bitmap exports (basic_block bb); bitmap imports (basic_block bb); void set_range_invariant (tree name); void dump (FILE *f); void dump (FILE *f, basic_block bb, bool verbose = true); private: vec m_outgoing; // BB: Outgoing ranges calculatable on edges vec m_incoming; // BB: Incoming ranges which can affect exports. bitmap m_maybe_variant; // Names which might have outgoing ranges. void maybe_add_gori (tree name, basic_block bb); void calculate_gori (basic_block bb); }; // This class is used to determine which SSA_NAMES can have ranges // calculated for them on outgoing edges from basic blocks. This represents // ONLY the effect of the basic block edge->src on a range. // // There are 2 primary entry points: // // has_edge_range_p (tree name, edge e) // returns true if the outgoing edge *may* be able to produce range // information for ssa_name NAME on edge E. // FALSE is returned if this edge does not affect the range of NAME. // if no edge is specified, return TRUE if name may have a value calculated // on *ANY* edge that has been seen. FALSE indicates that the global value // is applicable everywhere that has been processed. // // outgoing_edge_range_p (irange &range, edge e, tree name) // Actually does the calculation of RANGE for name on E // This represents application of whatever static range effect edge E // may have on NAME, not any cumulative effect. // There are also some internal APIs // // ssa_range_in_bb () is an internal routine which is used to start any // calculation chain using SSA_NAMES which come from outside the block. ie // a_2 = b_4 - 8 // if (a_2 < 30) // on the true edge, a_2 is known to be [0, 29] // b_4 can be calculated as [8, 37] // during this calculation, b_4 is considered an "import" and ssa_range_in_bb // is queried for a starting range which is used in the calculation. // A default value of VARYING provides the raw static info for the edge. // // If there is any known range for b_4 coming into this block, it can refine // the results. This allows for cascading results to be propogated. // if b_4 is [100, 200] on entry to the block, feeds into the calculation // of a_2 = [92, 192], and finally on the true edge the range would be // an empty range [] because it is not possible for the true edge to be taken. // // expr_range_in_bb is simply a wrapper which calls ssa_range_in_bb for // SSA_NAMES and otherwise simply calculates the range of the expression. // // The constructor takes a flag value to use on edges to check for the // NON_EXECUTABLE_EDGE property. The zero default means no flag is checked. // All value requests from NON_EXECUTABLE_EDGE edges are returned UNDEFINED. // // The remaining routines are internal use only. class gori_compute : public gori_map { public: gori_compute (int not_executable_flag = 0); bool outgoing_edge_range_p (irange &r, edge e, tree name, range_query &q); bool condexpr_adjust (irange &r1, irange &r2, gimple *s, tree cond, tree op1, tree op2, fur_source &src); bool has_edge_range_p (tree name, basic_block bb = NULL); bool has_edge_range_p (tree name, edge e); void dump (FILE *f); private: bool may_recompute_p (tree name, edge e); bool may_recompute_p (tree name, basic_block bb = NULL); bool compute_operand_range (irange &r, gimple *stmt, const irange &lhs, tree name, class fur_source &src); bool compute_operand_range_switch (irange &r, gswitch *s, const irange &lhs, tree name, fur_source &src); bool compute_operand1_range (irange &r, gimple *stmt, const irange &lhs, tree name, fur_source &src); bool compute_operand2_range (irange &r, gimple *stmt, const irange &lhs, tree name, fur_source &src); bool compute_operand1_and_operand2_range (irange &r, gimple *stmt, const irange &lhs, tree name, fur_source &src); void compute_logical_operands (irange &true_range, irange &false_range, gimple *stmt, const irange &lhs, tree name, fur_source &src, tree op, bool op_in_chain); bool logical_combine (irange &r, enum tree_code code, const irange &lhs, const irange &op1_true, const irange &op1_false, const irange &op2_true, const irange &op2_false); int_range<2> m_bool_zero; // Boolean false cached. int_range<2> m_bool_one; // Boolean true cached. gimple_outgoing_range outgoing; // Edge values for COND_EXPR & SWITCH_EXPR. range_tracer tracer; int m_not_executable_flag; }; // These routines provide a GIMPLE interface to the range-ops code. extern bool gimple_range_calc_op1 (irange &r, const gimple *s, const irange &lhs_range); extern bool gimple_range_calc_op1 (irange &r, const gimple *s, const irange &lhs_range, const irange &op2_range); extern bool gimple_range_calc_op2 (irange &r, const gimple *s, const irange &lhs_range, const irange &op1_range); // For each name that is an import into BB's exports.. #define FOR_EACH_GORI_IMPORT_NAME(gori, bb, name) \ for (gori_export_iterator iter ((gori).imports ((bb))); \ ((name) = iter.get_name ()); \ iter.next ()) // For each name possibly exported from block BB. #define FOR_EACH_GORI_EXPORT_NAME(gori, bb, name) \ for (gori_export_iterator iter ((gori).exports ((bb))); \ ((name) = iter.get_name ()); \ iter.next ()) // Used to assist with iterating over the GORI export list in various ways class gori_export_iterator { public: gori_export_iterator (bitmap b); void next (); tree get_name (); protected: bitmap bm; bitmap_iterator bi; unsigned y; }; #endif // GCC_GIMPLE_RANGE_GORI_H