AOMedia AV1 Codec
blockd.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
44 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
45 enum {
46  DIFFWTD_38 = 0,
47  DIFFWTD_38_INV,
48  DIFFWTD_MASK_TYPES,
49 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
50 
51 enum {
52  KEY_FRAME = 0,
53  INTER_FRAME = 1,
54  INTRA_ONLY_FRAME = 2, // replaces intra-only
55  S_FRAME = 3,
56  FRAME_TYPES,
57 } UENUM1BYTE(FRAME_TYPE);
58 
59 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
60  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
61 }
62 
63 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
64  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
65 }
66 
67 typedef struct {
68  uint8_t *plane[MAX_MB_PLANE];
69  int stride[MAX_MB_PLANE];
70 } BUFFER_SET;
71 
72 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
73  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
74 }
75 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
76  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
77 }
78 
79 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
80  static const PREDICTION_MODE lut[] = {
81  DC_PRED, // DC_PRED
82  V_PRED, // V_PRED
83  H_PRED, // H_PRED
84  D45_PRED, // D45_PRED
85  D135_PRED, // D135_PRED
86  D113_PRED, // D113_PRED
87  D157_PRED, // D157_PRED
88  D203_PRED, // D203_PRED
89  D67_PRED, // D67_PRED
90  SMOOTH_PRED, // SMOOTH_PRED
91  SMOOTH_V_PRED, // SMOOTH_V_PRED
92  SMOOTH_H_PRED, // SMOOTH_H_PRED
93  PAETH_PRED, // PAETH_PRED
94  NEARESTMV, // NEARESTMV
95  NEARMV, // NEARMV
96  GLOBALMV, // GLOBALMV
97  NEWMV, // NEWMV
98  NEARESTMV, // NEAREST_NEARESTMV
99  NEARMV, // NEAR_NEARMV
100  NEARESTMV, // NEAREST_NEWMV
101  NEWMV, // NEW_NEARESTMV
102  NEARMV, // NEAR_NEWMV
103  NEWMV, // NEW_NEARMV
104  GLOBALMV, // GLOBAL_GLOBALMV
105  NEWMV, // NEW_NEWMV
106  };
107  assert(NELEMENTS(lut) == MB_MODE_COUNT);
108  assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
109  return lut[mode];
110 }
111 
112 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
113  static const PREDICTION_MODE lut[] = {
114  MB_MODE_COUNT, // DC_PRED
115  MB_MODE_COUNT, // V_PRED
116  MB_MODE_COUNT, // H_PRED
117  MB_MODE_COUNT, // D45_PRED
118  MB_MODE_COUNT, // D135_PRED
119  MB_MODE_COUNT, // D113_PRED
120  MB_MODE_COUNT, // D157_PRED
121  MB_MODE_COUNT, // D203_PRED
122  MB_MODE_COUNT, // D67_PRED
123  MB_MODE_COUNT, // SMOOTH_PRED
124  MB_MODE_COUNT, // SMOOTH_V_PRED
125  MB_MODE_COUNT, // SMOOTH_H_PRED
126  MB_MODE_COUNT, // PAETH_PRED
127  MB_MODE_COUNT, // NEARESTMV
128  MB_MODE_COUNT, // NEARMV
129  MB_MODE_COUNT, // GLOBALMV
130  MB_MODE_COUNT, // NEWMV
131  NEARESTMV, // NEAREST_NEARESTMV
132  NEARMV, // NEAR_NEARMV
133  NEWMV, // NEAREST_NEWMV
134  NEARESTMV, // NEW_NEARESTMV
135  NEWMV, // NEAR_NEWMV
136  NEARMV, // NEW_NEARMV
137  GLOBALMV, // GLOBAL_GLOBALMV
138  NEWMV, // NEW_NEWMV
139  };
140  assert(NELEMENTS(lut) == MB_MODE_COUNT);
141  assert(is_inter_compound_mode(mode));
142  return lut[mode];
143 }
144 
145 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
146  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
147  mode == NEW_NEARMV);
148 }
149 
150 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
151  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
152  mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
153 }
154 
155 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
156  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
157 }
158 
159 /* For keyframes, intra block modes are predicted by the (already decoded)
160  modes for the Y blocks to the left and above us; for interframes, there
161  is a single probability table. */
162 
163 typedef struct {
164  // Value of base colors for Y, U, and V
165  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
166  // Number of base colors for Y (0) and UV (1)
167  uint8_t palette_size[2];
168 } PALETTE_MODE_INFO;
169 
170 typedef struct {
171  FILTER_INTRA_MODE filter_intra_mode;
172  uint8_t use_filter_intra;
173 } FILTER_INTRA_MODE_INFO;
174 
175 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
176  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
177 };
178 
179 #if CONFIG_RD_DEBUG
180 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
181 #endif
182 
183 typedef struct RD_STATS {
184  int rate;
185  int64_t dist;
186  // Please be careful of using rdcost, it's not guaranteed to be set all the
187  // time.
188  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
189  // these functions, make sure rdcost is always up-to-date according to
190  // rate/dist.
191  int64_t rdcost;
192  int64_t sse;
193  int skip_txfm; // sse should equal to dist when skip_txfm == 1
194  int zero_rate;
195 #if CONFIG_RD_DEBUG
196  int txb_coeff_cost[MAX_MB_PLANE];
197 #endif // CONFIG_RD_DEBUG
198 } RD_STATS;
199 
200 // This struct is used to group function args that are commonly
201 // sent together in functions related to interinter compound modes
202 typedef struct {
203  uint8_t *seg_mask;
204  int8_t wedge_index;
205  int8_t wedge_sign;
206  DIFFWTD_MASK_TYPE mask_type;
207  COMPOUND_TYPE type;
208 } INTERINTER_COMPOUND_DATA;
209 
210 #define INTER_TX_SIZE_BUF_LEN 16
211 #define TXK_TYPE_BUF_LEN 64
212 
216 typedef struct MB_MODE_INFO {
217  /*****************************************************************************
218  * \name General Info of the Coding Block
219  ****************************************************************************/
222  BLOCK_SIZE bsize;
224  PARTITION_TYPE partition;
226  PREDICTION_MODE mode;
228  UV_PREDICTION_MODE uv_mode;
233  /*****************************************************************************
234  * \name Inter Mode Info
235  ****************************************************************************/
238  int_mv mv[2];
240  MV_REFERENCE_FRAME ref_frame[2];
242  int_interpfilters interp_filters;
244  MOTION_MODE motion_mode;
246  uint8_t num_proj_ref;
251  WarpedMotionParams wm_params;
253  INTERINTRA_MODE interintra_mode;
257  INTERINTER_COMPOUND_DATA interinter_comp;
260  /*****************************************************************************
261  * \name Intra Mode Info
262  ****************************************************************************/
266  int8_t angle_delta[PLANE_TYPES];
268  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
272  uint8_t cfl_alpha_idx;
274  PALETTE_MODE_INFO palette_mode_info;
277  /*****************************************************************************
278  * \name Transform Info
279  ****************************************************************************/
282  int8_t skip_txfm;
284  TX_SIZE tx_size;
286  TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
289  /*****************************************************************************
290  * \name Loop Filter Info
291  ****************************************************************************/
296  int8_t delta_lf[FRAME_LF_COUNT];
299  /*****************************************************************************
300  * \name Bitfield for Memory Reduction
301  ****************************************************************************/
304  uint8_t segment_id : 3;
306  uint8_t seg_id_predicted : 1;
308  uint8_t ref_mv_idx : 2;
310  uint8_t skip_mode : 1;
312  uint8_t use_intrabc : 1;
314  uint8_t comp_group_idx : 1;
316  uint8_t compound_idx : 1;
318  uint8_t use_wedge_interintra : 1;
320  int8_t cdef_strength : 4;
323 #if CONFIG_RD_DEBUG
324 
325  RD_STATS rd_stats;
327  int mi_row;
329  int mi_col;
330 #endif
331 #if CONFIG_INSPECTION
332 
333  int16_t tx_skip[TXK_TYPE_BUF_LEN];
334 #endif
335 } MB_MODE_INFO;
336 
339 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
340  return mbmi->use_intrabc;
341 }
342 
343 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
344  assert(mode < UV_INTRA_MODES);
345  static const PREDICTION_MODE uv2y[] = {
346  DC_PRED, // UV_DC_PRED
347  V_PRED, // UV_V_PRED
348  H_PRED, // UV_H_PRED
349  D45_PRED, // UV_D45_PRED
350  D135_PRED, // UV_D135_PRED
351  D113_PRED, // UV_D113_PRED
352  D157_PRED, // UV_D157_PRED
353  D203_PRED, // UV_D203_PRED
354  D67_PRED, // UV_D67_PRED
355  SMOOTH_PRED, // UV_SMOOTH_PRED
356  SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
357  SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
358  PAETH_PRED, // UV_PAETH_PRED
359  DC_PRED, // UV_CFL_PRED
360  INTRA_INVALID, // UV_INTRA_MODES
361  INTRA_INVALID, // UV_MODE_INVALID
362  };
363  return uv2y[mode];
364 }
365 
366 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
367  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
368 }
369 
370 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
371  return mbmi->ref_frame[1] > INTRA_FRAME;
372 }
373 
374 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
375  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
376  (mbmi->ref_frame[1] >= BWDREF_FRAME)));
377 }
378 
379 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
380  static const MV_REFERENCE_FRAME lut[] = {
381  LAST_FRAME, // LAST_LAST2_FRAMES,
382  LAST_FRAME, // LAST_LAST3_FRAMES,
383  LAST_FRAME, // LAST_GOLDEN_FRAMES,
384  BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
385  LAST2_FRAME, // LAST2_LAST3_FRAMES
386  LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
387  LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
388  BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
389  ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
390  };
391  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
392  return lut[ref_idx];
393 }
394 
395 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
396  static const MV_REFERENCE_FRAME lut[] = {
397  LAST2_FRAME, // LAST_LAST2_FRAMES,
398  LAST3_FRAME, // LAST_LAST3_FRAMES,
399  GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
400  ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
401  LAST3_FRAME, // LAST2_LAST3_FRAMES
402  GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
403  GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
404  ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
405  ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
406  };
407  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
408  return lut[ref_idx];
409 }
410 
411 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
412 
413 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
414 
415 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
416  TransformationType type) {
417  const PREDICTION_MODE mode = mbmi->mode;
418  const BLOCK_SIZE bsize = mbmi->bsize;
419  const int block_size_allowed =
420  AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
421  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
422  block_size_allowed;
423 }
424 
425 #if CONFIG_MISMATCH_DEBUG
426 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
427  int mi_row, int tx_blk_col, int tx_blk_row,
428  int subsampling_x, int subsampling_y) {
429  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
430  (tx_blk_col << MI_SIZE_LOG2);
431  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
432  (tx_blk_row << MI_SIZE_LOG2);
433 }
434 #endif
435 
436 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
437 
438 struct buf_2d {
439  uint8_t *buf;
440  uint8_t *buf0;
441  int width;
442  int height;
443  int stride;
444 };
445 
446 typedef struct eob_info {
447  uint16_t eob;
448  uint16_t max_scan_line;
449 } eob_info;
450 
451 typedef struct {
452  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
453  eob_info eob_data[MAX_MB_PLANE]
454  [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
455  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
456 } CB_BUFFER;
457 
458 typedef struct macroblockd_plane {
459  PLANE_TYPE plane_type;
460  int subsampling_x;
461  int subsampling_y;
462  struct buf_2d dst;
463  struct buf_2d pre[2];
464  ENTROPY_CONTEXT *above_entropy_context;
465  ENTROPY_CONTEXT *left_entropy_context;
466 
467  // The dequantizers below are true dequantizers used only in the
468  // dequantization process. They have the same coefficient
469  // shift/scale as TX.
470  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
471  // Pointer to color index map of:
472  // - Current coding block, on encoder side.
473  // - Current superblock, on decoder side.
474  uint8_t *color_index_map;
475 
476  // block size in pixels
477  uint8_t width, height;
478 
479  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
480  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
481 } MACROBLOCKD_PLANE;
482 
483 #define BLOCK_OFFSET(i) ((i) << 4)
484 
488 typedef struct {
492  DECLARE_ALIGNED(16, InterpKernel, vfilter);
493 
497  DECLARE_ALIGNED(16, InterpKernel, hfilter);
498 } WienerInfo;
499 
501 typedef struct {
505  int ep;
506 
510  int xqd[2];
511 } SgrprojInfo;
512 
515 #if CONFIG_DEBUG
516 #define CFL_SUB8X8_VAL_MI_SIZE (4)
517 #define CFL_SUB8X8_VAL_MI_SQUARE \
518  (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
519 #endif // CONFIG_DEBUG
520 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
521 #define CFL_BUF_LINE (32)
522 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
523 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
524 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
525 typedef struct cfl_ctx {
526  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
527  // shifts)
528  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
529  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
530  int16_t ac_buf_q3[CFL_BUF_SQUARE];
531 
532  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
533  // for every scaling parameter
534  int dc_pred_is_cached[CFL_PRED_PLANES];
535  // The DC_PRED cache is disable when decoding
536  int use_dc_pred_cache;
537  // Only cache the first row of the DC_PRED
538  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
539 
540  // Height and width currently used in the CfL prediction buffer.
541  int buf_height, buf_width;
542 
543  int are_parameters_computed;
544 
545  // Chroma subsampling
546  int subsampling_x, subsampling_y;
547 
548  // Whether the reconstructed luma pixels need to be stored
549  int store_y;
550 } CFL_CTX;
551 
552 typedef struct dist_wtd_comp_params {
553  int use_dist_wtd_comp_avg;
554  int fwd_offset;
555  int bck_offset;
556 } DIST_WTD_COMP_PARAMS;
557 
558 struct scale_factors;
559 
568 typedef struct macroblockd {
573  int mi_row;
574  int mi_col;
581 
600 
604  struct macroblockd_plane plane[MAX_MB_PLANE];
605 
609  TileInfo tile;
610 
616 
633 
658 
664  uint8_t *tx_type_map;
670 
685  const struct scale_factors *block_ref_scale_factors[2];
686 
694 
701  ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
708  ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
709 
716  PARTITION_CONTEXT *above_partition_context;
723  PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
724 
731  TXFM_CONTEXT *above_txfm_context;
738  TXFM_CONTEXT *left_txfm_context;
745  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
746 
755  WienerInfo wiener_info[MAX_MB_PLANE];
756  SgrprojInfo sgrproj_info[MAX_MB_PLANE];
763  uint8_t width;
764  uint8_t height;
774  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
779  uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
780 
791 
796  uint8_t neighbors_ref_counts[REF_FRAMES];
797 
801  FRAME_CONTEXT *tile_ctx;
802 
806  int bd;
807 
811  int qindex[MAX_SEGMENTS];
815  int lossless[MAX_SEGMENTS];
827 
832 
836  struct aom_internal_error_info *error_info;
837 
841  const WarpedMotionParams *global_motion;
842 
866  int8_t delta_lf[FRAME_LF_COUNT];
883 
887  uint8_t *seg_mask;
888 
892  CFL_CTX cfl;
893 
904 
914  CONV_BUF_TYPE *tmp_conv_dst;
925  uint8_t *tmp_obmc_bufs[2];
926 } MACROBLOCKD;
927 
930 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
931  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
932 }
933 
934 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
935  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
936  ? CONVERT_TO_BYTEPTR(buf16)
937  : buf16;
938 }
939 
940 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
941  switch (bsize) {
942  case BLOCK_4X4: return 0;
943  case BLOCK_8X8: return 1;
944  case BLOCK_16X16: return 2;
945  case BLOCK_32X32: return 3;
946  case BLOCK_64X64: return 4;
947  case BLOCK_128X128: return 5;
948  default: return SQR_BLOCK_SIZES;
949  }
950 }
951 
952 // For a square block size 'bsize', returns the size of the sub-blocks used by
953 // the given partition type. If the partition produces sub-blocks of different
954 // sizes, then the function returns the largest sub-block size.
955 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
956 // Conversion tables).
957 // Note: the input block size should be square.
958 // Otherwise it's considered invalid.
959 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
960  PARTITION_TYPE partition) {
961  if (partition == PARTITION_INVALID) {
962  return BLOCK_INVALID;
963  } else {
964  const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
965  return sqr_bsize_idx >= SQR_BLOCK_SIZES
966  ? BLOCK_INVALID
967  : subsize_lookup[partition][sqr_bsize_idx];
968  }
969 }
970 
971 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
972  PLANE_TYPE plane_type) {
973  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
974  DCT_DCT, // DC_PRED
975  ADST_DCT, // V_PRED
976  DCT_ADST, // H_PRED
977  DCT_DCT, // D45_PRED
978  ADST_ADST, // D135_PRED
979  ADST_DCT, // D113_PRED
980  DCT_ADST, // D157_PRED
981  DCT_ADST, // D203_PRED
982  ADST_DCT, // D67_PRED
983  ADST_ADST, // SMOOTH_PRED
984  ADST_DCT, // SMOOTH_V_PRED
985  DCT_ADST, // SMOOTH_H_PRED
986  ADST_ADST, // PAETH_PRED
987  };
988  const PREDICTION_MODE mode =
989  (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
990  assert(mode < INTRA_MODES);
991  return _intra_mode_to_tx_type[mode];
992 }
993 
994 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
995 
996 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
997  return bsize > BLOCK_4X4;
998 }
999 
1000 // Number of transform types in each set type
1001 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1002  1, 2, 5, 7, 12, 16,
1003 };
1004 
1005 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1006  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1007  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1008  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1009  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1010  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1011  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1012 };
1013 
1014 // The bitmask corresponds to the transform types as defined in
1015 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1016 // the use of the corresponding transform type in that table.
1017 // The av1_derived_intra_tx_used_flag table is used when
1018 // use_reduced_intra_txset is set to 2, where one only searches
1019 // the transform types derived from residual statistics.
1020 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1021  0x0209, // DC_PRED: 0000 0010 0000 1001
1022  0x0403, // V_PRED: 0000 0100 0000 0011
1023  0x0805, // H_PRED: 0000 1000 0000 0101
1024  0x020F, // D45_PRED: 0000 0010 0000 1111
1025  0x0009, // D135_PRED: 0000 0000 0000 1001
1026  0x0009, // D113_PRED: 0000 0000 0000 1001
1027  0x0009, // D157_PRED: 0000 0000 0000 1001
1028  0x0805, // D203_PRED: 0000 1000 0000 0101
1029  0x0403, // D67_PRED: 0000 0100 0000 0011
1030  0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1031  0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1032  0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1033  0x0209, // PAETH_PRED: 0000 0010 0000 1001
1034 };
1035 
1036 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1037  0x080F, // DC_PRED: 0000 1000 0000 1111
1038  0x040F, // V_PRED: 0000 0100 0000 1111
1039  0x080F, // H_PRED: 0000 1000 0000 1111
1040  0x020F, // D45_PRED: 0000 0010 0000 1111
1041  0x080F, // D135_PRED: 0000 1000 0000 1111
1042  0x040F, // D113_PRED: 0000 0100 0000 1111
1043  0x080F, // D157_PRED: 0000 1000 0000 1111
1044  0x080F, // D203_PRED: 0000 1000 0000 1111
1045  0x040F, // D67_PRED: 0000 0100 0000 1111
1046  0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1047  0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1048  0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1049  0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1050 };
1051 
1052 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1053  0x0001, // 0000 0000 0000 0001
1054  0x0201, // 0000 0010 0000 0001
1055  0x020F, // 0000 0010 0000 1111
1056  0x0E0F, // 0000 1110 0000 1111
1057  0x0FFF, // 0000 1111 1111 1111
1058  0xFFFF, // 1111 1111 1111 1111
1059 };
1060 
1061 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1062  { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1063  { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1064 };
1065 
1066 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1067  int use_reduced_set) {
1068  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1069  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1070  if (tx_size_sqr_up == TX_32X32)
1071  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1072  if (use_reduced_set)
1073  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1074  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1075  return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1076 }
1077 
1078 // Maps tx set types to the indices.
1079 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1080  { // Intra
1081  0, -1, 2, 1, -1, -1 },
1082  { // Inter
1083  0, 3, -1, -1, 2, 1 },
1084 };
1085 
1086 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1087  int use_reduced_set) {
1088  const TxSetType set_type =
1089  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1090  return ext_tx_set_index[is_inter][set_type];
1091 }
1092 
1093 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1094  int use_reduced_set) {
1095  const int set_type =
1096  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1097  return av1_num_ext_tx_set[set_type];
1098 }
1099 
1100 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1101 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1102 
1103 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1104  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1105  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1106  if (bsize == BLOCK_4X4)
1107  return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1108  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1109  return max_rect_tx_size;
1110  else
1111  return largest_tx_size;
1112 }
1113 
1114 static const uint8_t mode_to_angle_map[] = {
1115  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1116 };
1117 
1118 // Converts block_index for given transform size to index of the block in raster
1119 // order.
1120 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1121  int block_idx) {
1122  // For transform size 4x8, the possible block_idx values are 0 & 2, because
1123  // block_idx values are incremented in steps of size 'tx_width_unit x
1124  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1125  // block number 1 in raster order, inside an 8x8 MI block.
1126  // For any other transform size, the two indices are equivalent.
1127  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1128 }
1129 
1130 // Inverse of above function.
1131 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
1132 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1133  int raster_order) {
1134  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1135  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1136  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1137 }
1138 
1139 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1140  const MACROBLOCKD *xd,
1141  TX_SIZE tx_size,
1142  int use_screen_content_tools) {
1143  const MB_MODE_INFO *const mbmi = xd->mi[0];
1144 
1145  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1146  xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1147  use_screen_content_tools)
1148  return DCT_DCT;
1149 
1150  return intra_mode_to_tx_type(mbmi, plane_type);
1151 }
1152 
1153 // Implements the get_plane_residual_size() function in the spec (Section
1154 // 5.11.38. Get plane residual size function).
1155 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1156  int subsampling_x,
1157  int subsampling_y) {
1158  assert(bsize < BLOCK_SIZES_ALL);
1159  assert(subsampling_x >= 0 && subsampling_x < 2);
1160  assert(subsampling_y >= 0 && subsampling_y < 2);
1161  return ss_size_lookup[bsize][subsampling_x][subsampling_y];
1162 }
1163 
1164 /*
1165  * Logic to generate the lookup tables:
1166  *
1167  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1168  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1169  * txs = sub_tx_size_map[txs];
1170  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1171  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1172  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1173  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1174  */
1175 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1176  int blk_col) {
1177  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1178  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1179  };
1180  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1181  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1182  };
1183  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1184  0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1185  };
1186  const int index =
1187  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1188  (blk_col >> tw_w_log2_table[bsize]);
1189  assert(index < INTER_TX_SIZE_BUF_LEN);
1190  return index;
1191 }
1192 
1193 #if CONFIG_INSPECTION
1194 /*
1195  * Here is the logic to generate the lookup tables:
1196  *
1197  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1198  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1199  * txs = sub_tx_size_map[txs];
1200  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1201  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1202  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1203  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1204  */
1205 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1206  int blk_col) {
1207  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1208  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1209  };
1210  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1211  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1212  };
1213  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1214  0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1215  };
1216  const int index =
1217  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1218  (blk_col >> tw_w_log2_table[bsize]);
1219  assert(index < TXK_TYPE_BUF_LEN);
1220  return index;
1221 }
1222 #endif // CONFIG_INSPECTION
1223 
1224 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1225  int blk_col, TX_SIZE tx_size,
1226  TX_TYPE tx_type) {
1227  const int stride = xd->tx_type_map_stride;
1228  xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1229 
1230  const int txw = tx_size_wide_unit[tx_size];
1231  const int txh = tx_size_high_unit[tx_size];
1232  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1233  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1234  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1235  // the intricacy, cover all the 16x16 units inside a 64 level transform.
1236  if (txw == tx_size_wide_unit[TX_64X64] ||
1237  txh == tx_size_high_unit[TX_64X64]) {
1238  const int tx_unit = tx_size_wide_unit[TX_16X16];
1239  for (int idy = 0; idy < txh; idy += tx_unit) {
1240  for (int idx = 0; idx < txw; idx += tx_unit) {
1241  xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1242  }
1243  }
1244  }
1245 }
1246 
1247 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1248  PLANE_TYPE plane_type, int blk_row,
1249  int blk_col, TX_SIZE tx_size,
1250  int reduced_tx_set) {
1251  const MB_MODE_INFO *const mbmi = xd->mi[0];
1252  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1253  return DCT_DCT;
1254  }
1255 
1256  TX_TYPE tx_type;
1257  if (plane_type == PLANE_TYPE_Y) {
1258  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1259  } else {
1260  if (is_inter_block(mbmi)) {
1261  // scale back to y plane's coordinate
1262  const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1263  blk_row <<= pd->subsampling_y;
1264  blk_col <<= pd->subsampling_x;
1265  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1266  } else {
1267  // In intra mode, uv planes don't share the same prediction mode as y
1268  // plane, so the tx_type should not be shared
1269  tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1270  }
1271  const TxSetType tx_set_type =
1272  av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1273  if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1274  }
1275  assert(tx_type < TX_TYPES);
1276  assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1277  reduced_tx_set)][tx_type]);
1278  return tx_type;
1279 }
1280 
1281 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1282  const int num_planes);
1283 
1284 /*
1285  * Logic to generate the lookup table:
1286  *
1287  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1288  * int depth = 0;
1289  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1290  * depth++;
1291  * tx_size = sub_tx_size_map[tx_size];
1292  * }
1293  */
1294 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1295  static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1296  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1297  };
1298  return bsize_to_max_depth_table[bsize];
1299 }
1300 
1301 /*
1302  * Logic to generate the lookup table:
1303  *
1304  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1305  * assert(tx_size != TX_4X4);
1306  * int depth = 0;
1307  * while (tx_size != TX_4X4) {
1308  * depth++;
1309  * tx_size = sub_tx_size_map[tx_size];
1310  * }
1311  * assert(depth < 10);
1312  */
1313 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1314  assert(bsize < BLOCK_SIZES_ALL);
1315  static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1316  0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1317  };
1318  const int depth = bsize_to_tx_size_depth_table[bsize];
1319  assert(depth <= MAX_TX_CATS);
1320  return depth - 1;
1321 }
1322 
1323 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1324  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1325  TX_SIZE tx_size = max_tx_size;
1326  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1327  return tx_size;
1328 }
1329 
1330 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1331  switch (tx_size) {
1332  case TX_64X64:
1333  case TX_64X32:
1334  case TX_32X64: return TX_32X32;
1335  case TX_64X16: return TX_32X16;
1336  case TX_16X64: return TX_16X32;
1337  default: return tx_size;
1338  }
1339 }
1340 
1341 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1342  int subsampling_y) {
1343  const BLOCK_SIZE plane_bsize =
1344  get_plane_block_size(bsize, subsampling_x, subsampling_y);
1345  assert(plane_bsize < BLOCK_SIZES_ALL);
1346  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1347  return av1_get_adjusted_tx_size(uv_tx);
1348 }
1349 
1350 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1351  const MB_MODE_INFO *mbmi = xd->mi[0];
1352  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1353  if (plane == 0) return mbmi->tx_size;
1354  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1355  return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1356  pd->subsampling_y);
1357 }
1358 
1359 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1360  const int num_planes);
1361 
1362 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1363 
1364 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1365 
1366 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1367  int blk_row, int blk_col,
1368  BLOCK_SIZE plane_bsize,
1369  TX_SIZE tx_size, void *arg);
1370 
1371 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1372  struct macroblockd_plane *pd, int plane,
1373  BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1374  int has_eob, int aoff, int loff);
1375 
1376 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
1377 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1378  return (mbmi->ref_frame[0] > INTRA_FRAME &&
1379  mbmi->ref_frame[1] == INTRA_FRAME);
1380 }
1381 
1382 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1383  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1384 }
1385 
1386 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1387  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1388 }
1389 
1390 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1391  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1392 }
1393 
1394 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1395  return is_interintra_allowed_bsize(mbmi->bsize) &&
1396  is_interintra_allowed_mode(mbmi->mode) &&
1397  is_interintra_allowed_ref(mbmi->ref_frame);
1398 }
1399 
1400 static INLINE int is_interintra_allowed_bsize_group(int group) {
1401  int i;
1402  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1403  if (size_group_lookup[i] == group &&
1404  is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1405  return 1;
1406  }
1407  }
1408  return 0;
1409 }
1410 
1411 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1412  return mbmi->ref_frame[0] > INTRA_FRAME &&
1413  mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1414 }
1415 
1416 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1417  int plane) {
1418  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1419  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1420  if (plane == 0) return max_txsize; // luma
1421  return av1_get_adjusted_tx_size(max_txsize); // chroma
1422 }
1423 
1424 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1425  assert(bsize < BLOCK_SIZES_ALL);
1426  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1427 }
1428 
1429 static INLINE int is_motion_variation_allowed_compound(
1430  const MB_MODE_INFO *mbmi) {
1431  return !has_second_ref(mbmi);
1432 }
1433 
1434 // input: log2 of length, 0(4), 1(8), ...
1435 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1436 
1437 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1438  return mbmi->overlappable_neighbors != 0;
1439 }
1440 
1441 static INLINE MOTION_MODE
1442 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1443  const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1444  if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1445  if (xd->cur_frame_force_integer_mv == 0) {
1446  const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1447  if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1448  }
1449  if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1450  is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1451  is_motion_variation_allowed_compound(mbmi)) {
1452  assert(!has_second_ref(mbmi));
1453  if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1455  !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1456  return WARPED_CAUSAL;
1457  }
1458  return OBMC_CAUSAL;
1459  }
1460  return SIMPLE_TRANSLATION;
1461 }
1462 
1463 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1464  return (is_inter_block(mbmi));
1465 }
1466 
1467 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1468  BLOCK_SIZE sb_type) {
1469  assert(sb_type < BLOCK_SIZES_ALL);
1470  return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
1471  block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
1472 }
1473 
1474 // Returns sub-sampled dimensions of the given block.
1475 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1476 // differ from 'height' and 'width' when part of the block is outside the
1477 // right
1478 // and/or bottom image boundary.
1479 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1480  const MACROBLOCKD *xd, int *width,
1481  int *height,
1482  int *rows_within_bounds,
1483  int *cols_within_bounds) {
1484  const int block_height = block_size_high[bsize];
1485  const int block_width = block_size_wide[bsize];
1486  const int block_rows = (xd->mb_to_bottom_edge >= 0)
1487  ? block_height
1488  : (xd->mb_to_bottom_edge >> 3) + block_height;
1489  const int block_cols = (xd->mb_to_right_edge >= 0)
1490  ? block_width
1491  : (xd->mb_to_right_edge >> 3) + block_width;
1492  const struct macroblockd_plane *const pd = &xd->plane[plane];
1493  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1494  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1495  assert(block_width >= block_cols);
1496  assert(block_height >= block_rows);
1497  const int plane_block_width = block_width >> pd->subsampling_x;
1498  const int plane_block_height = block_height >> pd->subsampling_y;
1499  // Special handling for chroma sub8x8.
1500  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1501  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1502  if (width) {
1503  *width = plane_block_width + 2 * is_chroma_sub8_x;
1504  assert(*width >= 0);
1505  }
1506  if (height) {
1507  *height = plane_block_height + 2 * is_chroma_sub8_y;
1508  assert(*height >= 0);
1509  }
1510  if (rows_within_bounds) {
1511  *rows_within_bounds =
1512  (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1513  assert(*rows_within_bounds >= 0);
1514  }
1515  if (cols_within_bounds) {
1516  *cols_within_bounds =
1517  (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1518  assert(*cols_within_bounds >= 0);
1519  }
1520 }
1521 
1522 /* clang-format off */
1523 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1524 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1525  [CDF_SIZE(PALETTE_COLORS)];
1526 // Pointer to a const three-dimensional array whose first dimension is
1527 // PALETTE_SIZES.
1528 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1529 /* clang-format on */
1530 
1531 typedef struct {
1532  int rows;
1533  int cols;
1534  int n_colors;
1535  int plane_width;
1536  int plane_height;
1537  uint8_t *color_map;
1538  MapCdf map_cdf;
1539  ColorCost color_cost;
1540 } Av1ColorMapParam;
1541 
1542 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1543  const MB_MODE_INFO *mbmi) {
1544  int ref;
1545 
1546  // First check if all modes are GLOBALMV
1547  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1548 
1549  if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1550  return 0;
1551 
1552  // Now check if all global motion is non translational
1553  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1554  if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1555  }
1556  return 1;
1557 }
1558 
1559 static INLINE PLANE_TYPE get_plane_type(int plane) {
1560  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1561 }
1562 
1563 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1564  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1565  return 1024;
1566  }
1567  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1568  return 512;
1569  }
1570  return tx_size_2d[tx_size];
1571 }
1572 
1575 #ifdef __cplusplus
1576 } // extern "C"
1577 #endif
1578 
1579 #endif // AOM_AV1_COMMON_BLOCKD_H_
TileInfo tile
Definition: blockd.h:609
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:266
int8_t interintra_wedge_index
The type of wedge used in interintra mode.
Definition: blockd.h:255
Parameters related to Wiener Filter.
Definition: blockd.h:488
MV_REFERENCE_FRAME ref_frame[2]
The reference frames for the MV.
Definition: blockd.h:240
SgrprojInfo sgrproj_info[3]
Definition: blockd.h:756
int mb_to_left_edge
Definition: blockd.h:675
CONV_BUF_TYPE * tmp_conv_dst
Definition: blockd.h:914
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:296
uint8_t ref_mv_idx
Which ref_mv to use.
Definition: blockd.h:308
uint8_t overlappable_neighbors
The number of overlapped neighbors above/left for obmc/warp motion mode.
Definition: blockd.h:249
int mi_row
Definition: blockd.h:573
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:268
uint8_t * seg_mask
Definition: blockd.h:887
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:745
bool is_chroma_ref
Definition: blockd.h:599
const YV12_BUFFER_CONFIG * cur_buf
Definition: blockd.h:693
struct macroblockd_plane plane[3]
Definition: blockd.h:604
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:226
int qindex[8]
Definition: blockd.h:811
uint8_t * tx_type_map
Definition: blockd.h:664
int current_base_qindex
Definition: blockd.h:826
PARTITION_TYPE partition
The partition type of the current coding block.
Definition: blockd.h:224
uint8_t segment_id
The segment id.
Definition: blockd.h:304
bool left_available
Definition: blockd.h:624
uint8_t compound_idx
Indicates whether dist_wtd_comp(0) is used or not (0).
Definition: blockd.h:316
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:738
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:312
bool is_first_horizontal_rect
Definition: blockd.h:790
uint8_t * tmp_obmc_bufs[2]
Definition: blockd.h:925
int8_t cdef_strength
CDEF strength per BLOCK_64X64.
Definition: blockd.h:320
int_mv mv[2]
The motion vectors used by the current inter mode.
Definition: blockd.h:238
int mb_to_right_edge
Definition: blockd.h:676
int lossless[8]
Definition: blockd.h:815
bool up_available
Definition: blockd.h:620
uint8_t comp_group_idx
Indicates if masked compound is used(1) or not (0).
Definition: blockd.h:314
struct aom_internal_error_info * error_info
Definition: blockd.h:836
uint8_t seg_id_predicted
Only valid when temporal update if off.
Definition: blockd.h:306
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:716
int mi_col
Definition: blockd.h:574
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:650
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:774
const WarpedMotionParams * global_motion
Definition: blockd.h:841
Parameters related to Sgrproj Filter.
Definition: blockd.h:501
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:274
WienerInfo wiener_info[3]
Definition: blockd.h:755
bool cdef_transmitted[4]
Definition: blockd.h:882
uint8_t skip_mode
Inter skip mode.
Definition: blockd.h:310
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:701
uint8_t cfl_alpha_idx
Chroma from Luma: Index of the alpha Cb and alpha Cr combination.
Definition: blockd.h:272
const struct scale_factors * block_ref_scale_factors[2]
Definition: blockd.h:685
uint8_t neighbors_ref_counts[REF_FRAMES]
Definition: blockd.h:796
int mb_to_bottom_edge
Definition: blockd.h:678
MOTION_MODE motion_mode
The motion mode used by the inter prediction.
Definition: blockd.h:244
int8_t delta_lf_from_base
Definition: blockd.h:851
MB_MODE_INFO * above_mbmi
Definition: blockd.h:643
bool chroma_left_available
Definition: blockd.h:632
uint8_t width
Definition: blockd.h:763
int current_qindex
The q index for the current coding block.
Definition: blockd.h:230
YV12 frame buffer data structure.
Definition: yv12config.h:38
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:228
CFL_CTX cfl
Definition: blockd.h:892
bool is_last_vertical_rect
Definition: blockd.h:785
MB_MODE_INFO ** mi
Definition: blockd.h:615
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:708
int ep
Definition: blockd.h:505
Variables related to current coding block.
Definition: blockd.h:568
WarpedMotionParams wm_params
The parameters used in warp motion mode.
Definition: blockd.h:251
int8_t skip_txfm
Whether to skip transforming and sending.
Definition: blockd.h:282
bool chroma_up_available
Definition: blockd.h:628
uint8_t height
Definition: blockd.h:764
INTERINTER_COMPOUND_DATA interinter_comp
Struct that stores the data used in interinter compound mode.
Definition: blockd.h:257
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:222
uint8_t num_proj_ref
Number of samples used by warp causal.
Definition: blockd.h:246
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:216
int8_t delta_lf_from_base
Definition: blockd.h:294
int tx_type_map_stride
Definition: blockd.h:669
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:866
FRAME_CONTEXT * tile_ctx
Definition: blockd.h:801
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:284
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:731
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]
Transform size when recursive txfm tree is on.
Definition: blockd.h:286
MB_MODE_INFO * left_mbmi
Definition: blockd.h:638
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:657
int bd
Definition: blockd.h:806
uint16_t color_index_map_offset[2]
Definition: blockd.h:903
INTERINTRA_MODE interintra_mode
The type of intra mode used by inter-intra.
Definition: blockd.h:253
int mb_to_top_edge
Definition: blockd.h:677
uint8_t use_wedge_interintra
Whether to use interintra wedge.
Definition: blockd.h:318
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:779
int mi_stride
Definition: blockd.h:580
int_interpfilters interp_filters
Filter used in subpel interpolation.
Definition: blockd.h:242
int cur_frame_force_integer_mv
Definition: blockd.h:831
int8_t cfl_alpha_signs
Chroma from Luma: Joint sign of alpha Cb and alpha Cr.
Definition: blockd.h:270
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:723