AOMedia AV1 Codec
intra_mode_search_utils.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
17 #ifndef AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
18 #define AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
19 
20 #include "av1/common/enums.h"
21 #include "av1/common/pred_common.h"
22 #include "av1/common/reconintra.h"
23 
24 #include "av1/encoder/encoder.h"
25 #include "av1/encoder/model_rd.h"
26 #include "av1/encoder/palette.h"
27 #include "av1/encoder/hybrid_fwd_txfm.h"
28 
29 #ifdef __cplusplus
30 extern "C" {
31 #endif
32 
34 #define BINS 32
35 static const float av1_intra_hog_model_bias[DIRECTIONAL_MODES] = {
36  0.450578f, 0.695518f, -0.717944f, -0.639894f,
37  -0.602019f, -0.453454f, 0.055857f, -0.465480f,
38 };
39 
40 static const float av1_intra_hog_model_weights[BINS * DIRECTIONAL_MODES] = {
41  -3.076402f, -3.757063f, -3.275266f, -3.180665f, -3.452105f, -3.216593f,
42  -2.871212f, -3.134296f, -1.822324f, -2.401411f, -1.541016f, -1.195322f,
43  -0.434156f, 0.322868f, 2.260546f, 3.368715f, 3.989290f, 3.308487f,
44  2.277893f, 0.923793f, 0.026412f, -0.385174f, -0.718622f, -1.408867f,
45  -1.050558f, -2.323941f, -2.225827f, -2.585453f, -3.054283f, -2.875087f,
46  -2.985709f, -3.447155f, 3.758139f, 3.204353f, 2.170998f, 0.826587f,
47  -0.269665f, -0.702068f, -1.085776f, -2.175249f, -1.623180f, -2.975142f,
48  -2.779629f, -3.190799f, -3.521900f, -3.375480f, -3.319355f, -3.897389f,
49  -3.172334f, -3.594528f, -2.879132f, -2.547777f, -2.921023f, -2.281844f,
50  -1.818988f, -2.041771f, -0.618268f, -1.396458f, -0.567153f, -0.285868f,
51  -0.088058f, 0.753494f, 2.092413f, 3.215266f, -3.300277f, -2.748658f,
52  -2.315784f, -2.423671f, -2.257283f, -2.269583f, -2.196660f, -2.301076f,
53  -2.646516f, -2.271319f, -2.254366f, -2.300102f, -2.217960f, -2.473300f,
54  -2.116866f, -2.528246f, -3.314712f, -1.701010f, -0.589040f, -0.088077f,
55  0.813112f, 1.702213f, 2.653045f, 3.351749f, 3.243554f, 3.199409f,
56  2.437856f, 1.468854f, 0.533039f, -0.099065f, -0.622643f, -2.200732f,
57  -4.228861f, -2.875263f, -1.273956f, -0.433280f, 0.803771f, 1.975043f,
58  3.179528f, 3.939064f, 3.454379f, 3.689386f, 3.116411f, 1.970991f,
59  0.798406f, -0.628514f, -1.252546f, -2.825176f, -4.090178f, -3.777448f,
60  -3.227314f, -3.479403f, -3.320569f, -3.159372f, -2.729202f, -2.722341f,
61  -3.054913f, -2.742923f, -2.612703f, -2.662632f, -2.907314f, -3.117794f,
62  -3.102660f, -3.970972f, -4.891357f, -3.935582f, -3.347758f, -2.721924f,
63  -2.219011f, -1.702391f, -0.866529f, -0.153743f, 0.107733f, 1.416882f,
64  2.572884f, 3.607755f, 3.974820f, 3.997783f, 2.970459f, 0.791687f,
65  -1.478921f, -1.228154f, -1.216955f, -1.765932f, -1.951003f, -1.985301f,
66  -1.975881f, -1.985593f, -2.422371f, -2.419978f, -2.531288f, -2.951853f,
67  -3.071380f, -3.277027f, -3.373539f, -4.462010f, -0.967888f, 0.805524f,
68  2.794130f, 3.685984f, 3.745195f, 3.252444f, 2.316108f, 1.399146f,
69  -0.136519f, -0.162811f, -1.004357f, -1.667911f, -1.964662f, -2.937579f,
70  -3.019533f, -3.942766f, -5.102767f, -3.882073f, -3.532027f, -3.451956f,
71  -2.944015f, -2.643064f, -2.529872f, -2.077290f, -2.809965f, -1.803734f,
72  -1.783593f, -1.662585f, -1.415484f, -1.392673f, -0.788794f, -1.204819f,
73  -1.998864f, -1.182102f, -0.892110f, -1.317415f, -1.359112f, -1.522867f,
74  -1.468552f, -1.779072f, -2.332959f, -2.160346f, -2.329387f, -2.631259f,
75  -2.744936f, -3.052494f, -2.787363f, -3.442548f, -4.245075f, -3.032172f,
76  -2.061609f, -1.768116f, -1.286072f, -0.706587f, -0.192413f, 0.386938f,
77  0.716997f, 1.481393f, 2.216702f, 2.737986f, 3.109809f, 3.226084f,
78  2.490098f, -0.095827f, -3.864816f, -3.507248f, -3.128925f, -2.908251f,
79  -2.883836f, -2.881411f, -2.524377f, -2.624478f, -2.399573f, -2.367718f,
80  -1.918255f, -1.926277f, -1.694584f, -1.723790f, -0.966491f, -1.183115f,
81  -1.430687f, 0.872896f, 2.766550f, 3.610080f, 3.578041f, 3.334928f,
82  2.586680f, 1.895721f, 1.122195f, 0.488519f, -0.140689f, -0.799076f,
83  -1.222860f, -1.502437f, -1.900969f, -3.206816f,
84 };
85 
86 static const NN_CONFIG av1_intra_hog_model_nnconfig = {
87  BINS, // num_inputs
88  DIRECTIONAL_MODES, // num_outputs
89  0, // num_hidden_layers
90  { 0 },
91  {
92  av1_intra_hog_model_weights,
93  },
94  {
95  av1_intra_hog_model_bias,
96  },
97 };
98 
99 #define FIX_PREC_BITS (16)
100 static AOM_INLINE int get_hist_bin_idx(int dx, int dy) {
101  const int32_t ratio = (dy * (1 << FIX_PREC_BITS)) / dx;
102 
103  // Find index by bisection
104  static const int thresholds[BINS] = {
105  -1334015, -441798, -261605, -183158, -138560, -109331, -88359, -72303,
106  -59392, -48579, -39272, -30982, -23445, -16400, -9715, -3194,
107  3227, 9748, 16433, 23478, 31015, 39305, 48611, 59425,
108  72336, 88392, 109364, 138593, 183191, 261638, 441831, INT32_MAX
109  };
110 
111  int lo_idx = 0, hi_idx = BINS - 1;
112  // Divide into segments of size 8 gives better performance than binary search
113  // here.
114  if (ratio <= thresholds[7]) {
115  lo_idx = 0;
116  hi_idx = 7;
117  } else if (ratio <= thresholds[15]) {
118  lo_idx = 8;
119  hi_idx = 15;
120  } else if (ratio <= thresholds[23]) {
121  lo_idx = 16;
122  hi_idx = 23;
123  } else {
124  lo_idx = 24;
125  hi_idx = 31;
126  }
127 
128  for (int idx = lo_idx; idx <= hi_idx; idx++) {
129  if (ratio <= thresholds[idx]) {
130  return idx;
131  }
132  }
133  assert(0 && "No valid histogram bin found!");
134  return BINS - 1;
135 }
136 #undef FIX_PREC_BITS
137 
138 static AOM_INLINE void generate_hog(const uint8_t *src, int stride, int rows,
139  int cols, float *hist) {
140  float total = 0.1f;
141  src += stride;
142  for (int r = 1; r < rows - 1; ++r) {
143  for (int c = 1; c < cols - 1; ++c) {
144  const uint8_t *above = &src[c - stride];
145  const uint8_t *below = &src[c + stride];
146  const uint8_t *left = &src[c - 1];
147  const uint8_t *right = &src[c + 1];
148  // Calculate gradient using Sobel fitlers.
149  const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
150  (left[-stride] + 2 * left[0] + left[stride]);
151  const int dy = (below[-1] + 2 * below[0] + below[1]) -
152  (above[-1] + 2 * above[0] + above[1]);
153  if (dx == 0 && dy == 0) continue;
154  const int temp = abs(dx) + abs(dy);
155  if (!temp) continue;
156  total += temp;
157  if (dx == 0) {
158  hist[0] += temp / 2;
159  hist[BINS - 1] += temp / 2;
160  } else {
161  const int idx = get_hist_bin_idx(dx, dy);
162  assert(idx >= 0 && idx < BINS);
163  hist[idx] += temp;
164  }
165  }
166  src += stride;
167  }
168 
169  for (int i = 0; i < BINS; ++i) hist[i] /= total;
170 }
171 
172 static AOM_INLINE void generate_hog_hbd(const uint8_t *src8, int stride,
173  int rows, int cols, float *hist) {
174  float total = 0.1f;
175  uint16_t *src = CONVERT_TO_SHORTPTR(src8);
176  src += stride;
177  for (int r = 1; r < rows - 1; ++r) {
178  for (int c = 1; c < cols - 1; ++c) {
179  const uint16_t *above = &src[c - stride];
180  const uint16_t *below = &src[c + stride];
181  const uint16_t *left = &src[c - 1];
182  const uint16_t *right = &src[c + 1];
183  // Calculate gradient using Sobel fitlers.
184  const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
185  (left[-stride] + 2 * left[0] + left[stride]);
186  const int dy = (below[-1] + 2 * below[0] + below[1]) -
187  (above[-1] + 2 * above[0] + above[1]);
188  if (dx == 0 && dy == 0) continue;
189  const int temp = abs(dx) + abs(dy);
190  if (!temp) continue;
191  total += temp;
192  if (dx == 0) {
193  hist[0] += temp / 2;
194  hist[BINS - 1] += temp / 2;
195  } else {
196  const int idx = get_hist_bin_idx(dx, dy);
197  assert(idx >= 0 && idx < BINS);
198  hist[idx] += temp;
199  }
200  }
201  src += stride;
202  }
203 
204  for (int i = 0; i < BINS; ++i) hist[i] /= total;
205 }
206 
207 static INLINE void collect_hog_data(const MACROBLOCK *x, BLOCK_SIZE bsize,
208  int plane, float *hog) {
209  const MACROBLOCKD *xd = &x->e_mbd;
210  const struct macroblockd_plane *const pd = &xd->plane[plane];
211  const int ss_x = pd->subsampling_x;
212  const int ss_y = pd->subsampling_y;
213  const int bh = block_size_high[bsize];
214  const int bw = block_size_wide[bsize];
215  const int rows =
216  ((xd->mb_to_bottom_edge >= 0) ? bh : (xd->mb_to_bottom_edge >> 3) + bh) >>
217  ss_y;
218  const int cols =
219  ((xd->mb_to_right_edge >= 0) ? bw : (xd->mb_to_right_edge >> 3) + bw) >>
220  ss_x;
221  const int src_stride = x->plane[plane].src.stride;
222  const uint8_t *src = x->plane[plane].src.buf;
223  if (is_cur_buf_hbd(xd)) {
224  generate_hog_hbd(src, src_stride, rows, cols, hog);
225  } else {
226  generate_hog(src, src_stride, rows, cols, hog);
227  }
228 
229  // Scale the hog so the luma and chroma are on the same scale
230  for (int b = 0; b < BINS; ++b) {
231  hog[b] *= (1 + ss_x) * (1 + ss_y);
232  }
233 }
234 
235 static AOM_INLINE void prune_intra_mode_with_hog(
236  const MACROBLOCK *x, BLOCK_SIZE bsize, float th,
237  uint8_t *directional_mode_skip_mask, int is_chroma) {
238  aom_clear_system_state();
239 
240  const int plane = is_chroma ? AOM_PLANE_U : AOM_PLANE_Y;
241  float hist[BINS] = { 0.0f };
242  collect_hog_data(x, bsize, plane, hist);
243 
244  // Make prediction for each of the mode
245  float scores[DIRECTIONAL_MODES] = { 0.0f };
246  aom_clear_system_state();
247  av1_nn_predict(hist, &av1_intra_hog_model_nnconfig, 1, scores);
248  for (UV_PREDICTION_MODE uv_mode = UV_V_PRED; uv_mode <= UV_D67_PRED;
249  uv_mode++) {
250  if (scores[uv_mode - UV_V_PRED] <= th) {
251  directional_mode_skip_mask[uv_mode] = 1;
252  }
253  }
254 
255  aom_clear_system_state();
256 }
257 #undef BINS
258 
259 // Returns the cost needed to send a uniformly distributed r.v.
260 static AOM_INLINE int write_uniform_cost(int n, int v) {
261  const int l = get_unsigned_bits(n);
262  const int m = (1 << l) - n;
263  if (l == 0) return 0;
264  if (v < m)
265  return av1_cost_literal(l - 1);
266  else
267  return av1_cost_literal(l);
268 }
275 static AOM_INLINE int intra_mode_info_cost_y(const AV1_COMP *cpi,
276  const MACROBLOCK *x,
277  const MB_MODE_INFO *mbmi,
278  BLOCK_SIZE bsize, int mode_cost) {
279  int total_rate = mode_cost;
280  const ModeCosts *mode_costs = &x->mode_costs;
281  const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
282  const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
283  const int use_intrabc = mbmi->use_intrabc;
284  // Can only activate one mode.
285  assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
286  use_filter_intra) <= 1);
287  const int try_palette = av1_allow_palette(
289  if (try_palette && mbmi->mode == DC_PRED) {
290  const MACROBLOCKD *xd = &x->e_mbd;
291  const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
292  const int mode_ctx = av1_get_palette_mode_ctx(xd);
293  total_rate +=
294  mode_costs->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
295  if (use_palette) {
296  const uint8_t *const color_map = xd->plane[0].color_index_map;
297  int block_width, block_height, rows, cols;
298  av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
299  &cols);
300  const int plt_size = mbmi->palette_mode_info.palette_size[0];
301  int palette_mode_cost =
302  mode_costs
303  ->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
304  write_uniform_cost(plt_size, color_map[0]);
305  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
306  const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
307  palette_mode_cost +=
308  av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache,
309  n_cache, cpi->common.seq_params.bit_depth);
310  palette_mode_cost +=
311  av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);
312  total_rate += palette_mode_cost;
313  }
314  }
315  if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
316  total_rate += mode_costs->filter_intra_cost[mbmi->bsize][use_filter_intra];
317  if (use_filter_intra) {
318  total_rate +=
320  .filter_intra_mode];
321  }
322  }
323  if (av1_is_directional_mode(mbmi->mode)) {
324  if (av1_use_angle_delta(bsize)) {
325  total_rate +=
326  mode_costs->angle_delta_cost[mbmi->mode - V_PRED]
327  [MAX_ANGLE_DELTA +
328  mbmi->angle_delta[PLANE_TYPE_Y]];
329  }
330  }
331  if (av1_allow_intrabc(&cpi->common))
332  total_rate += mode_costs->intrabc_cost[use_intrabc];
333  return total_rate;
334 }
335 
340 static AOM_INLINE int intra_mode_info_cost_uv(const AV1_COMP *cpi,
341  const MACROBLOCK *x,
342  const MB_MODE_INFO *mbmi,
343  BLOCK_SIZE bsize, int mode_cost) {
344  int total_rate = mode_cost;
345  const ModeCosts *mode_costs = &x->mode_costs;
346  const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
347  const UV_PREDICTION_MODE mode = mbmi->uv_mode;
348  // Can only activate one mode.
349  assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);
350 
351  const int try_palette = av1_allow_palette(
353  if (try_palette && mode == UV_DC_PRED) {
354  const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
355  total_rate +=
356  mode_costs->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
357  if (use_palette) {
358  const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
359  const int plt_size = pmi->palette_size[1];
360  const MACROBLOCKD *xd = &x->e_mbd;
361  const uint8_t *const color_map = xd->plane[1].color_index_map;
362  int palette_mode_cost =
363  mode_costs
364  ->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
365  write_uniform_cost(plt_size, color_map[0]);
366  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
367  const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
368  palette_mode_cost += av1_palette_color_cost_uv(
369  pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth);
370  palette_mode_cost +=
371  av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
372  total_rate += palette_mode_cost;
373  }
374  }
375  if (av1_is_directional_mode(get_uv_mode(mode))) {
376  if (av1_use_angle_delta(bsize)) {
377  total_rate +=
378  mode_costs->angle_delta_cost[mode - V_PRED]
379  [mbmi->angle_delta[PLANE_TYPE_UV] +
380  MAX_ANGLE_DELTA];
381  }
382  }
383  return total_rate;
384 }
385 
390 static void av1_quick_txfm(int use_hadamard, TX_SIZE tx_size, int is_hbd,
391  int bd, const int16_t *src_diff, int src_stride,
392  tran_low_t *coeff) {
393  if (use_hadamard) {
394  switch (tx_size) {
395  case TX_4X4: aom_hadamard_4x4(src_diff, src_stride, coeff); break;
396  case TX_8X8: aom_hadamard_8x8(src_diff, src_stride, coeff); break;
397  case TX_16X16: aom_hadamard_16x16(src_diff, src_stride, coeff); break;
398  case TX_32X32: aom_hadamard_32x32(src_diff, src_stride, coeff); break;
399  default: assert(0);
400  }
401  } else {
402  assert(IMPLIES(!is_hbd, bd == 8));
403  TxfmParam txfm_param;
404  txfm_param.tx_type = DCT_DCT;
405  txfm_param.tx_size = tx_size;
406  txfm_param.lossless = 0;
407  txfm_param.bd = bd;
408  txfm_param.is_hbd = is_hbd;
409  txfm_param.tx_set_type = EXT_TX_SET_ALL16;
410  av1_fwd_txfm(src_diff, coeff, src_stride, &txfm_param);
411  }
412 }
413 
415 // Makes a quick intra prediction and estimate the rdcost with a model without
416 // going through the whole txfm/quantize/itxfm process.
417 static int64_t intra_model_rd(const AV1_COMMON *cm, MACROBLOCK *const x,
418  int plane, BLOCK_SIZE plane_bsize,
419  TX_SIZE tx_size, int use_hadamard) {
420  MACROBLOCKD *const xd = &x->e_mbd;
421  int row, col;
422  assert(!is_inter_block(xd->mi[0]));
423  const int stepr = tx_size_high_unit[tx_size];
424  const int stepc = tx_size_wide_unit[tx_size];
425  const int txbw = tx_size_wide[tx_size];
426  const int txbh = tx_size_high[tx_size];
427  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
428  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
429  int64_t satd_cost = 0;
430  struct macroblock_plane *p = &x->plane[plane];
431  struct macroblockd_plane *pd = &xd->plane[plane];
432  // Prediction.
433  for (row = 0; row < max_blocks_high; row += stepr) {
434  for (col = 0; col < max_blocks_wide; col += stepc) {
435  av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
436  // Here we use p->src_diff and p->coeff as temporary buffers for
437  // prediction residue and transform coefficients. The buffers are only
438  // used in this for loop, therefore we don't need to properly add offset
439  // to the buffers.
440  av1_subtract_block(
441  xd, txbh, txbw, p->src_diff, block_size_wide[plane_bsize],
442  p->src.buf + (((row * p->src.stride) + col) << 2), p->src.stride,
443  pd->dst.buf + (((row * pd->dst.stride) + col) << 2), pd->dst.stride);
444  av1_quick_txfm(use_hadamard, tx_size, is_cur_buf_hbd(xd), xd->bd,
445  p->src_diff, block_size_wide[plane_bsize], p->coeff);
446  satd_cost += aom_satd(p->coeff, tx_size_2d[tx_size]);
447  }
448  }
449  return satd_cost;
450 }
463 static AOM_INLINE int model_intra_yrd_and_prune(const AV1_COMP *const cpi,
464  MACROBLOCK *x, BLOCK_SIZE bsize,
465  int64_t *best_model_rd) {
466  const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]);
467  const int plane = 0;
468  const AV1_COMMON *cm = &cpi->common;
469  const int64_t this_model_rd =
470  intra_model_rd(cm, x, plane, bsize, tx_size, /*use_hadamard=*/1);
471  if (*best_model_rd != INT64_MAX &&
472  this_model_rd > *best_model_rd + (*best_model_rd >> 2)) {
473  return 1;
474  } else if (this_model_rd < *best_model_rd) {
475  *best_model_rd = this_model_rd;
476  }
477  return 0;
478 }
479 
480 #ifdef __cplusplus
481 } // extern "C"
482 #endif
483 
484 #endif // AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:266
#define AOM_PLANE_U
Definition: aom_image.h:200
int palette_uv_size_cost[7][PALETTE_SIZES]
palette_uv_size_cost
Definition: block.h:623
struct buf_2d src
A buffer containing the source frame.
Definition: block.h:117
AV1_COMMON common
Definition: encoder.h:2138
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:268
FeatureFlags features
Definition: av1_common_int.h:882
static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mode_cost)
Returns the rate cost for luma prediction mode info of intra blocks.
Definition: intra_mode_search_utils.h:275
int angle_delta_cost[DIRECTIONAL_MODES][2 *MAX_ANGLE_DELTA+1]
angle_delta_cost
Definition: block.h:607
struct macroblockd_plane plane[3]
Definition: blockd.h:604
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:226
int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi, const uint16_t *color_cache, int n_cache, int bit_depth)
Gets the rate cost for transmitting luma palette color values.
Definition: palette.c:125
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:312
Holds the entropy costs for various modes sent to the bitstream.
Definition: block.h:583
int mb_to_right_edge
Definition: blockd.h:676
int palette_y_size_cost[7][PALETTE_SIZES]
palette_y_size_cost
Definition: block.h:621
bool allow_screen_content_tools
Definition: av1_common_int.h:351
int filter_intra_cost[BLOCK_SIZES_ALL][2]
filter_intra_cost
Definition: block.h:603
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:274
int16_t * src_diff
Stores source - pred so the txfm can be computed later.
Definition: block.h:105
int filter_intra_mode_cost[FILTER_INTRA_MODES]
filter_intra_mode_cost
Definition: block.h:605
int mb_to_bottom_edge
Definition: blockd.h:678
tran_low_t * coeff
Transformed coefficients.
Definition: block.h:111
static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mode_cost)
Return the rate cost for chroma prediction mode info of intra blocks.
Definition: intra_mode_search_utils.h:340
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:228
SequenceHeader seq_params
Definition: av1_common_int.h:953
MB_MODE_INFO ** mi
Definition: blockd.h:615
Variables related to current coding block.
Definition: blockd.h:568
int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi, const uint16_t *color_cache, int n_cache, int bit_depth)
Gets the rate cost for transmitting luma palette chroma values.
Definition: palette.c:139
Top level encoder structure.
Definition: encoder.h:2095
ModeCosts mode_costs
The rate needed to signal a mode to the bitstream.
Definition: block.h:959
Declares top-level encoder structures and functions.
static void av1_quick_txfm(int use_hadamard, TX_SIZE tx_size, int is_hbd, int bd, const int16_t *src_diff, int src_stride, tran_low_t *coeff)
Apply Hadamard or DCT transform.
Definition: intra_mode_search_utils.h:390
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:723
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:222
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:216
int palette_y_mode_cost[7][3][2]
palette_y_mode_cost
Definition: block.h:631
static int model_intra_yrd_and_prune(const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *best_model_rd)
Estimate the luma rdcost of a given intra mode and try to prune it.
Definition: intra_mode_search_utils.h:463
int intrabc_cost[2]
intrabc_cost
Definition: block.h:618
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:284
Declares functions used in palette search.
int bd
Definition: blockd.h:806
Encoder&#39;s parameters related to the current coding block.
Definition: block.h:846
struct macroblock_plane plane[3]
Each of the encoding plane.
Definition: block.h:856
Each source plane of the current macroblock.
Definition: block.h:103
int palette_uv_mode_cost[2][2]
palette_uv_mode_cost
Definition: block.h:633
#define AOM_PLANE_Y
Definition: aom_image.h:199
MACROBLOCKD e_mbd
Decoder&#39;s view of current coding block.
Definition: block.h:864