libstdc++
|
00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2017 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_map.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{map} 00054 */ 00055 00056 #ifndef _STL_MAP_H 00057 #define _STL_MAP_H 1 00058 00059 #include <bits/functexcept.h> 00060 #include <bits/concept_check.h> 00061 #if __cplusplus >= 201103L 00062 #include <initializer_list> 00063 #include <tuple> 00064 #endif 00065 00066 namespace std _GLIBCXX_VISIBILITY(default) 00067 { 00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00069 00070 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00071 class multimap; 00072 00073 /** 00074 * @brief A standard container made up of (key,value) pairs, which can be 00075 * retrieved based on a key, in logarithmic time. 00076 * 00077 * @ingroup associative_containers 00078 * 00079 * @tparam _Key Type of key objects. 00080 * @tparam _Tp Type of mapped objects. 00081 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00082 * @tparam _Alloc Allocator type, defaults to 00083 * allocator<pair<const _Key, _Tp>. 00084 * 00085 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00086 * <a href="tables.html#66">reversible container</a>, and an 00087 * <a href="tables.html#69">associative container</a> (using unique keys). 00088 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00089 * value_type is std::pair<const Key,T>. 00090 * 00091 * Maps support bidirectional iterators. 00092 * 00093 * The private tree data is declared exactly the same way for map and 00094 * multimap; the distinction is made entirely in how the tree functions are 00095 * called (*_unique versus *_equal, same as the standard). 00096 */ 00097 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00098 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00099 class map 00100 { 00101 public: 00102 typedef _Key key_type; 00103 typedef _Tp mapped_type; 00104 typedef std::pair<const _Key, _Tp> value_type; 00105 typedef _Compare key_compare; 00106 typedef _Alloc allocator_type; 00107 00108 private: 00109 #ifdef _GLIBCXX_CONCEPT_CHECKS 00110 // concept requirements 00111 typedef typename _Alloc::value_type _Alloc_value_type; 00112 # if __cplusplus < 201103L 00113 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00114 # endif 00115 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00116 _BinaryFunctionConcept) 00117 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00118 #endif 00119 00120 public: 00121 class value_compare 00122 : public std::binary_function<value_type, value_type, bool> 00123 { 00124 friend class map<_Key, _Tp, _Compare, _Alloc>; 00125 protected: 00126 _Compare comp; 00127 00128 value_compare(_Compare __c) 00129 : comp(__c) { } 00130 00131 public: 00132 bool operator()(const value_type& __x, const value_type& __y) const 00133 { return comp(__x.first, __y.first); } 00134 }; 00135 00136 private: 00137 /// This turns a red-black tree into a [multi]map. 00138 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00139 rebind<value_type>::other _Pair_alloc_type; 00140 00141 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00142 key_compare, _Pair_alloc_type> _Rep_type; 00143 00144 /// The actual tree structure. 00145 _Rep_type _M_t; 00146 00147 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits; 00148 00149 public: 00150 // many of these are specified differently in ISO, but the following are 00151 // "functionally equivalent" 00152 typedef typename _Alloc_traits::pointer pointer; 00153 typedef typename _Alloc_traits::const_pointer const_pointer; 00154 typedef typename _Alloc_traits::reference reference; 00155 typedef typename _Alloc_traits::const_reference const_reference; 00156 typedef typename _Rep_type::iterator iterator; 00157 typedef typename _Rep_type::const_iterator const_iterator; 00158 typedef typename _Rep_type::size_type size_type; 00159 typedef typename _Rep_type::difference_type difference_type; 00160 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00161 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00162 00163 #if __cplusplus > 201402L 00164 using node_type = typename _Rep_type::node_type; 00165 using insert_return_type = typename _Rep_type::insert_return_type; 00166 #endif 00167 00168 // [23.3.1.1] construct/copy/destroy 00169 // (get_allocator() is also listed in this section) 00170 00171 /** 00172 * @brief Default constructor creates no elements. 00173 */ 00174 #if __cplusplus < 201103L 00175 map() : _M_t() { } 00176 #else 00177 map() = default; 00178 #endif 00179 00180 /** 00181 * @brief Creates a %map with no elements. 00182 * @param __comp A comparison object. 00183 * @param __a An allocator object. 00184 */ 00185 explicit 00186 map(const _Compare& __comp, 00187 const allocator_type& __a = allocator_type()) 00188 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00189 00190 /** 00191 * @brief %Map copy constructor. 00192 * 00193 * Whether the allocator is copied depends on the allocator traits. 00194 */ 00195 #if __cplusplus < 201103L 00196 map(const map& __x) 00197 : _M_t(__x._M_t) { } 00198 #else 00199 map(const map&) = default; 00200 00201 /** 00202 * @brief %Map move constructor. 00203 * 00204 * The newly-created %map contains the exact contents of the moved 00205 * instance. The moved instance is a valid, but unspecified, %map. 00206 */ 00207 map(map&&) = default; 00208 00209 /** 00210 * @brief Builds a %map from an initializer_list. 00211 * @param __l An initializer_list. 00212 * @param __comp A comparison object. 00213 * @param __a An allocator object. 00214 * 00215 * Create a %map consisting of copies of the elements in the 00216 * initializer_list @a __l. 00217 * This is linear in N if the range is already sorted, and NlogN 00218 * otherwise (where N is @a __l.size()). 00219 */ 00220 map(initializer_list<value_type> __l, 00221 const _Compare& __comp = _Compare(), 00222 const allocator_type& __a = allocator_type()) 00223 : _M_t(__comp, _Pair_alloc_type(__a)) 00224 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00225 00226 /// Allocator-extended default constructor. 00227 explicit 00228 map(const allocator_type& __a) 00229 : _M_t(_Compare(), _Pair_alloc_type(__a)) { } 00230 00231 /// Allocator-extended copy constructor. 00232 map(const map& __m, const allocator_type& __a) 00233 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { } 00234 00235 /// Allocator-extended move constructor. 00236 map(map&& __m, const allocator_type& __a) 00237 noexcept(is_nothrow_copy_constructible<_Compare>::value 00238 && _Alloc_traits::_S_always_equal()) 00239 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { } 00240 00241 /// Allocator-extended initialier-list constructor. 00242 map(initializer_list<value_type> __l, const allocator_type& __a) 00243 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00244 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00245 00246 /// Allocator-extended range constructor. 00247 template<typename _InputIterator> 00248 map(_InputIterator __first, _InputIterator __last, 00249 const allocator_type& __a) 00250 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00251 { _M_t._M_insert_unique(__first, __last); } 00252 #endif 00253 00254 /** 00255 * @brief Builds a %map from a range. 00256 * @param __first An input iterator. 00257 * @param __last An input iterator. 00258 * 00259 * Create a %map consisting of copies of the elements from 00260 * [__first,__last). This is linear in N if the range is 00261 * already sorted, and NlogN otherwise (where N is 00262 * distance(__first,__last)). 00263 */ 00264 template<typename _InputIterator> 00265 map(_InputIterator __first, _InputIterator __last) 00266 : _M_t() 00267 { _M_t._M_insert_unique(__first, __last); } 00268 00269 /** 00270 * @brief Builds a %map from a range. 00271 * @param __first An input iterator. 00272 * @param __last An input iterator. 00273 * @param __comp A comparison functor. 00274 * @param __a An allocator object. 00275 * 00276 * Create a %map consisting of copies of the elements from 00277 * [__first,__last). This is linear in N if the range is 00278 * already sorted, and NlogN otherwise (where N is 00279 * distance(__first,__last)). 00280 */ 00281 template<typename _InputIterator> 00282 map(_InputIterator __first, _InputIterator __last, 00283 const _Compare& __comp, 00284 const allocator_type& __a = allocator_type()) 00285 : _M_t(__comp, _Pair_alloc_type(__a)) 00286 { _M_t._M_insert_unique(__first, __last); } 00287 00288 #if __cplusplus >= 201103L 00289 /** 00290 * The dtor only erases the elements, and note that if the elements 00291 * themselves are pointers, the pointed-to memory is not touched in any 00292 * way. Managing the pointer is the user's responsibility. 00293 */ 00294 ~map() = default; 00295 #endif 00296 00297 /** 00298 * @brief %Map assignment operator. 00299 * 00300 * Whether the allocator is copied depends on the allocator traits. 00301 */ 00302 #if __cplusplus < 201103L 00303 map& 00304 operator=(const map& __x) 00305 { 00306 _M_t = __x._M_t; 00307 return *this; 00308 } 00309 #else 00310 map& 00311 operator=(const map&) = default; 00312 00313 /// Move assignment operator. 00314 map& 00315 operator=(map&&) = default; 00316 00317 /** 00318 * @brief %Map list assignment operator. 00319 * @param __l An initializer_list. 00320 * 00321 * This function fills a %map with copies of the elements in the 00322 * initializer list @a __l. 00323 * 00324 * Note that the assignment completely changes the %map and 00325 * that the resulting %map's size is the same as the number 00326 * of elements assigned. 00327 */ 00328 map& 00329 operator=(initializer_list<value_type> __l) 00330 { 00331 _M_t._M_assign_unique(__l.begin(), __l.end()); 00332 return *this; 00333 } 00334 #endif 00335 00336 /// Get a copy of the memory allocation object. 00337 allocator_type 00338 get_allocator() const _GLIBCXX_NOEXCEPT 00339 { return allocator_type(_M_t.get_allocator()); } 00340 00341 // iterators 00342 /** 00343 * Returns a read/write iterator that points to the first pair in the 00344 * %map. 00345 * Iteration is done in ascending order according to the keys. 00346 */ 00347 iterator 00348 begin() _GLIBCXX_NOEXCEPT 00349 { return _M_t.begin(); } 00350 00351 /** 00352 * Returns a read-only (constant) iterator that points to the first pair 00353 * in the %map. Iteration is done in ascending order according to the 00354 * keys. 00355 */ 00356 const_iterator 00357 begin() const _GLIBCXX_NOEXCEPT 00358 { return _M_t.begin(); } 00359 00360 /** 00361 * Returns a read/write iterator that points one past the last 00362 * pair in the %map. Iteration is done in ascending order 00363 * according to the keys. 00364 */ 00365 iterator 00366 end() _GLIBCXX_NOEXCEPT 00367 { return _M_t.end(); } 00368 00369 /** 00370 * Returns a read-only (constant) iterator that points one past the last 00371 * pair in the %map. Iteration is done in ascending order according to 00372 * the keys. 00373 */ 00374 const_iterator 00375 end() const _GLIBCXX_NOEXCEPT 00376 { return _M_t.end(); } 00377 00378 /** 00379 * Returns a read/write reverse iterator that points to the last pair in 00380 * the %map. Iteration is done in descending order according to the 00381 * keys. 00382 */ 00383 reverse_iterator 00384 rbegin() _GLIBCXX_NOEXCEPT 00385 { return _M_t.rbegin(); } 00386 00387 /** 00388 * Returns a read-only (constant) reverse iterator that points to the 00389 * last pair in the %map. Iteration is done in descending order 00390 * according to the keys. 00391 */ 00392 const_reverse_iterator 00393 rbegin() const _GLIBCXX_NOEXCEPT 00394 { return _M_t.rbegin(); } 00395 00396 /** 00397 * Returns a read/write reverse iterator that points to one before the 00398 * first pair in the %map. Iteration is done in descending order 00399 * according to the keys. 00400 */ 00401 reverse_iterator 00402 rend() _GLIBCXX_NOEXCEPT 00403 { return _M_t.rend(); } 00404 00405 /** 00406 * Returns a read-only (constant) reverse iterator that points to one 00407 * before the first pair in the %map. Iteration is done in descending 00408 * order according to the keys. 00409 */ 00410 const_reverse_iterator 00411 rend() const _GLIBCXX_NOEXCEPT 00412 { return _M_t.rend(); } 00413 00414 #if __cplusplus >= 201103L 00415 /** 00416 * Returns a read-only (constant) iterator that points to the first pair 00417 * in the %map. Iteration is done in ascending order according to the 00418 * keys. 00419 */ 00420 const_iterator 00421 cbegin() const noexcept 00422 { return _M_t.begin(); } 00423 00424 /** 00425 * Returns a read-only (constant) iterator that points one past the last 00426 * pair in the %map. Iteration is done in ascending order according to 00427 * the keys. 00428 */ 00429 const_iterator 00430 cend() const noexcept 00431 { return _M_t.end(); } 00432 00433 /** 00434 * Returns a read-only (constant) reverse iterator that points to the 00435 * last pair in the %map. Iteration is done in descending order 00436 * according to the keys. 00437 */ 00438 const_reverse_iterator 00439 crbegin() const noexcept 00440 { return _M_t.rbegin(); } 00441 00442 /** 00443 * Returns a read-only (constant) reverse iterator that points to one 00444 * before the first pair in the %map. Iteration is done in descending 00445 * order according to the keys. 00446 */ 00447 const_reverse_iterator 00448 crend() const noexcept 00449 { return _M_t.rend(); } 00450 #endif 00451 00452 // capacity 00453 /** Returns true if the %map is empty. (Thus begin() would equal 00454 * end().) 00455 */ 00456 bool 00457 empty() const _GLIBCXX_NOEXCEPT 00458 { return _M_t.empty(); } 00459 00460 /** Returns the size of the %map. */ 00461 size_type 00462 size() const _GLIBCXX_NOEXCEPT 00463 { return _M_t.size(); } 00464 00465 /** Returns the maximum size of the %map. */ 00466 size_type 00467 max_size() const _GLIBCXX_NOEXCEPT 00468 { return _M_t.max_size(); } 00469 00470 // [23.3.1.2] element access 00471 /** 00472 * @brief Subscript ( @c [] ) access to %map data. 00473 * @param __k The key for which data should be retrieved. 00474 * @return A reference to the data of the (key,data) %pair. 00475 * 00476 * Allows for easy lookup with the subscript ( @c [] ) 00477 * operator. Returns data associated with the key specified in 00478 * subscript. If the key does not exist, a pair with that key 00479 * is created using default values, which is then returned. 00480 * 00481 * Lookup requires logarithmic time. 00482 */ 00483 mapped_type& 00484 operator[](const key_type& __k) 00485 { 00486 // concept requirements 00487 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00488 00489 iterator __i = lower_bound(__k); 00490 // __i->first is greater than or equivalent to __k. 00491 if (__i == end() || key_comp()(__k, (*__i).first)) 00492 #if __cplusplus >= 201103L 00493 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00494 std::tuple<const key_type&>(__k), 00495 std::tuple<>()); 00496 #else 00497 __i = insert(__i, value_type(__k, mapped_type())); 00498 #endif 00499 return (*__i).second; 00500 } 00501 00502 #if __cplusplus >= 201103L 00503 mapped_type& 00504 operator[](key_type&& __k) 00505 { 00506 // concept requirements 00507 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00508 00509 iterator __i = lower_bound(__k); 00510 // __i->first is greater than or equivalent to __k. 00511 if (__i == end() || key_comp()(__k, (*__i).first)) 00512 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00513 std::forward_as_tuple(std::move(__k)), 00514 std::tuple<>()); 00515 return (*__i).second; 00516 } 00517 #endif 00518 00519 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00520 // DR 464. Suggestion for new member functions in standard containers. 00521 /** 00522 * @brief Access to %map data. 00523 * @param __k The key for which data should be retrieved. 00524 * @return A reference to the data whose key is equivalent to @a __k, if 00525 * such a data is present in the %map. 00526 * @throw std::out_of_range If no such data is present. 00527 */ 00528 mapped_type& 00529 at(const key_type& __k) 00530 { 00531 iterator __i = lower_bound(__k); 00532 if (__i == end() || key_comp()(__k, (*__i).first)) 00533 __throw_out_of_range(__N("map::at")); 00534 return (*__i).second; 00535 } 00536 00537 const mapped_type& 00538 at(const key_type& __k) const 00539 { 00540 const_iterator __i = lower_bound(__k); 00541 if (__i == end() || key_comp()(__k, (*__i).first)) 00542 __throw_out_of_range(__N("map::at")); 00543 return (*__i).second; 00544 } 00545 00546 // modifiers 00547 #if __cplusplus >= 201103L 00548 /** 00549 * @brief Attempts to build and insert a std::pair into the %map. 00550 * 00551 * @param __args Arguments used to generate a new pair instance (see 00552 * std::piecewise_contruct for passing arguments to each 00553 * part of the pair constructor). 00554 * 00555 * @return A pair, of which the first element is an iterator that points 00556 * to the possibly inserted pair, and the second is a bool that 00557 * is true if the pair was actually inserted. 00558 * 00559 * This function attempts to build and insert a (key, value) %pair into 00560 * the %map. 00561 * A %map relies on unique keys and thus a %pair is only inserted if its 00562 * first element (the key) is not already present in the %map. 00563 * 00564 * Insertion requires logarithmic time. 00565 */ 00566 template<typename... _Args> 00567 std::pair<iterator, bool> 00568 emplace(_Args&&... __args) 00569 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } 00570 00571 /** 00572 * @brief Attempts to build and insert a std::pair into the %map. 00573 * 00574 * @param __pos An iterator that serves as a hint as to where the pair 00575 * should be inserted. 00576 * @param __args Arguments used to generate a new pair instance (see 00577 * std::piecewise_contruct for passing arguments to each 00578 * part of the pair constructor). 00579 * @return An iterator that points to the element with key of the 00580 * std::pair built from @a __args (may or may not be that 00581 * std::pair). 00582 * 00583 * This function is not concerned about whether the insertion took place, 00584 * and thus does not return a boolean like the single-argument emplace() 00585 * does. 00586 * Note that the first parameter is only a hint and can potentially 00587 * improve the performance of the insertion process. A bad hint would 00588 * cause no gains in efficiency. 00589 * 00590 * See 00591 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00592 * for more on @a hinting. 00593 * 00594 * Insertion requires logarithmic time (if the hint is not taken). 00595 */ 00596 template<typename... _Args> 00597 iterator 00598 emplace_hint(const_iterator __pos, _Args&&... __args) 00599 { 00600 return _M_t._M_emplace_hint_unique(__pos, 00601 std::forward<_Args>(__args)...); 00602 } 00603 #endif 00604 00605 #if __cplusplus > 201402L 00606 /// Extract a node. 00607 node_type 00608 extract(const_iterator __pos) 00609 { 00610 __glibcxx_assert(__pos != end()); 00611 return _M_t.extract(__pos); 00612 } 00613 00614 /// Extract a node. 00615 node_type 00616 extract(const key_type& __x) 00617 { return _M_t.extract(__x); } 00618 00619 /// Re-insert an extracted node. 00620 insert_return_type 00621 insert(node_type&& __nh) 00622 { return _M_t._M_reinsert_node_unique(std::move(__nh)); } 00623 00624 /// Re-insert an extracted node. 00625 iterator 00626 insert(const_iterator __hint, node_type&& __nh) 00627 { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); } 00628 00629 template<typename, typename> 00630 friend class _Rb_tree_merge_helper; 00631 00632 template<typename _C2> 00633 void 00634 merge(map<_Key, _Tp, _C2, _Alloc>& __source) 00635 { 00636 using _Merge_helper = _Rb_tree_merge_helper<map, _C2>; 00637 _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source)); 00638 } 00639 00640 template<typename _C2> 00641 void 00642 merge(map<_Key, _Tp, _C2, _Alloc>&& __source) 00643 { merge(__source); } 00644 00645 template<typename _C2> 00646 void 00647 merge(multimap<_Key, _Tp, _C2, _Alloc>& __source) 00648 { 00649 using _Merge_helper = _Rb_tree_merge_helper<map, _C2>; 00650 _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source)); 00651 } 00652 00653 template<typename _C2> 00654 void 00655 merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source) 00656 { merge(__source); } 00657 #endif // C++17 00658 00659 #if __cplusplus > 201402L 00660 #define __cpp_lib_map_try_emplace 201411 00661 /** 00662 * @brief Attempts to build and insert a std::pair into the %map. 00663 * 00664 * @param __k Key to use for finding a possibly existing pair in 00665 * the map. 00666 * @param __args Arguments used to generate the .second for a new pair 00667 * instance. 00668 * 00669 * @return A pair, of which the first element is an iterator that points 00670 * to the possibly inserted pair, and the second is a bool that 00671 * is true if the pair was actually inserted. 00672 * 00673 * This function attempts to build and insert a (key, value) %pair into 00674 * the %map. 00675 * A %map relies on unique keys and thus a %pair is only inserted if its 00676 * first element (the key) is not already present in the %map. 00677 * If a %pair is not inserted, this function has no effect. 00678 * 00679 * Insertion requires logarithmic time. 00680 */ 00681 template <typename... _Args> 00682 pair<iterator, bool> 00683 try_emplace(const key_type& __k, _Args&&... __args) 00684 { 00685 iterator __i = lower_bound(__k); 00686 if (__i == end() || key_comp()(__k, (*__i).first)) 00687 { 00688 __i = emplace_hint(__i, std::piecewise_construct, 00689 std::forward_as_tuple(__k), 00690 std::forward_as_tuple( 00691 std::forward<_Args>(__args)...)); 00692 return {__i, true}; 00693 } 00694 return {__i, false}; 00695 } 00696 00697 // move-capable overload 00698 template <typename... _Args> 00699 pair<iterator, bool> 00700 try_emplace(key_type&& __k, _Args&&... __args) 00701 { 00702 iterator __i = lower_bound(__k); 00703 if (__i == end() || key_comp()(__k, (*__i).first)) 00704 { 00705 __i = emplace_hint(__i, std::piecewise_construct, 00706 std::forward_as_tuple(std::move(__k)), 00707 std::forward_as_tuple( 00708 std::forward<_Args>(__args)...)); 00709 return {__i, true}; 00710 } 00711 return {__i, false}; 00712 } 00713 00714 /** 00715 * @brief Attempts to build and insert a std::pair into the %map. 00716 * 00717 * @param __hint An iterator that serves as a hint as to where the 00718 * pair should be inserted. 00719 * @param __k Key to use for finding a possibly existing pair in 00720 * the map. 00721 * @param __args Arguments used to generate the .second for a new pair 00722 * instance. 00723 * @return An iterator that points to the element with key of the 00724 * std::pair built from @a __args (may or may not be that 00725 * std::pair). 00726 * 00727 * This function is not concerned about whether the insertion took place, 00728 * and thus does not return a boolean like the single-argument 00729 * try_emplace() does. However, if insertion did not take place, 00730 * this function has no effect. 00731 * Note that the first parameter is only a hint and can potentially 00732 * improve the performance of the insertion process. A bad hint would 00733 * cause no gains in efficiency. 00734 * 00735 * See 00736 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00737 * for more on @a hinting. 00738 * 00739 * Insertion requires logarithmic time (if the hint is not taken). 00740 */ 00741 template <typename... _Args> 00742 iterator 00743 try_emplace(const_iterator __hint, const key_type& __k, 00744 _Args&&... __args) 00745 { 00746 iterator __i; 00747 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00748 if (__true_hint.second) 00749 __i = emplace_hint(iterator(__true_hint.second), 00750 std::piecewise_construct, 00751 std::forward_as_tuple(__k), 00752 std::forward_as_tuple( 00753 std::forward<_Args>(__args)...)); 00754 else 00755 __i = iterator(__true_hint.first); 00756 return __i; 00757 } 00758 00759 // move-capable overload 00760 template <typename... _Args> 00761 iterator 00762 try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args) 00763 { 00764 iterator __i; 00765 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00766 if (__true_hint.second) 00767 __i = emplace_hint(iterator(__true_hint.second), 00768 std::piecewise_construct, 00769 std::forward_as_tuple(std::move(__k)), 00770 std::forward_as_tuple( 00771 std::forward<_Args>(__args)...)); 00772 else 00773 __i = iterator(__true_hint.first); 00774 return __i; 00775 } 00776 #endif 00777 00778 /** 00779 * @brief Attempts to insert a std::pair into the %map. 00780 00781 * @param __x Pair to be inserted (see std::make_pair for easy 00782 * creation of pairs). 00783 * 00784 * @return A pair, of which the first element is an iterator that 00785 * points to the possibly inserted pair, and the second is 00786 * a bool that is true if the pair was actually inserted. 00787 * 00788 * This function attempts to insert a (key, value) %pair into the %map. 00789 * A %map relies on unique keys and thus a %pair is only inserted if its 00790 * first element (the key) is not already present in the %map. 00791 * 00792 * Insertion requires logarithmic time. 00793 */ 00794 std::pair<iterator, bool> 00795 insert(const value_type& __x) 00796 { return _M_t._M_insert_unique(__x); } 00797 00798 #if __cplusplus >= 201103L 00799 template<typename _Pair, typename = typename 00800 std::enable_if<std::is_constructible<value_type, 00801 _Pair&&>::value>::type> 00802 std::pair<iterator, bool> 00803 insert(_Pair&& __x) 00804 { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); } 00805 #endif 00806 00807 #if __cplusplus >= 201103L 00808 /** 00809 * @brief Attempts to insert a list of std::pairs into the %map. 00810 * @param __list A std::initializer_list<value_type> of pairs to be 00811 * inserted. 00812 * 00813 * Complexity similar to that of the range constructor. 00814 */ 00815 void 00816 insert(std::initializer_list<value_type> __list) 00817 { insert(__list.begin(), __list.end()); } 00818 #endif 00819 00820 /** 00821 * @brief Attempts to insert a std::pair into the %map. 00822 * @param __position An iterator that serves as a hint as to where the 00823 * pair should be inserted. 00824 * @param __x Pair to be inserted (see std::make_pair for easy creation 00825 * of pairs). 00826 * @return An iterator that points to the element with key of 00827 * @a __x (may or may not be the %pair passed in). 00828 * 00829 00830 * This function is not concerned about whether the insertion 00831 * took place, and thus does not return a boolean like the 00832 * single-argument insert() does. Note that the first 00833 * parameter is only a hint and can potentially improve the 00834 * performance of the insertion process. A bad hint would 00835 * cause no gains in efficiency. 00836 * 00837 * See 00838 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 00839 * for more on @a hinting. 00840 * 00841 * Insertion requires logarithmic time (if the hint is not taken). 00842 */ 00843 iterator 00844 #if __cplusplus >= 201103L 00845 insert(const_iterator __position, const value_type& __x) 00846 #else 00847 insert(iterator __position, const value_type& __x) 00848 #endif 00849 { return _M_t._M_insert_unique_(__position, __x); } 00850 00851 #if __cplusplus >= 201103L 00852 template<typename _Pair, typename = typename 00853 std::enable_if<std::is_constructible<value_type, 00854 _Pair&&>::value>::type> 00855 iterator 00856 insert(const_iterator __position, _Pair&& __x) 00857 { return _M_t._M_insert_unique_(__position, 00858 std::forward<_Pair>(__x)); } 00859 #endif 00860 00861 /** 00862 * @brief Template function that attempts to insert a range of elements. 00863 * @param __first Iterator pointing to the start of the range to be 00864 * inserted. 00865 * @param __last Iterator pointing to the end of the range. 00866 * 00867 * Complexity similar to that of the range constructor. 00868 */ 00869 template<typename _InputIterator> 00870 void 00871 insert(_InputIterator __first, _InputIterator __last) 00872 { _M_t._M_insert_unique(__first, __last); } 00873 00874 #if __cplusplus > 201402L 00875 #define __cpp_lib_map_insertion 201411 00876 /** 00877 * @brief Attempts to insert or assign a std::pair into the %map. 00878 * @param __k Key to use for finding a possibly existing pair in 00879 * the map. 00880 * @param __obj Argument used to generate the .second for a pair 00881 * instance. 00882 * 00883 * @return A pair, of which the first element is an iterator that 00884 * points to the possibly inserted pair, and the second is 00885 * a bool that is true if the pair was actually inserted. 00886 * 00887 * This function attempts to insert a (key, value) %pair into the %map. 00888 * A %map relies on unique keys and thus a %pair is only inserted if its 00889 * first element (the key) is not already present in the %map. 00890 * If the %pair was already in the %map, the .second of the %pair 00891 * is assigned from __obj. 00892 * 00893 * Insertion requires logarithmic time. 00894 */ 00895 template <typename _Obj> 00896 pair<iterator, bool> 00897 insert_or_assign(const key_type& __k, _Obj&& __obj) 00898 { 00899 iterator __i = lower_bound(__k); 00900 if (__i == end() || key_comp()(__k, (*__i).first)) 00901 { 00902 __i = emplace_hint(__i, std::piecewise_construct, 00903 std::forward_as_tuple(__k), 00904 std::forward_as_tuple( 00905 std::forward<_Obj>(__obj))); 00906 return {__i, true}; 00907 } 00908 (*__i).second = std::forward<_Obj>(__obj); 00909 return {__i, false}; 00910 } 00911 00912 // move-capable overload 00913 template <typename _Obj> 00914 pair<iterator, bool> 00915 insert_or_assign(key_type&& __k, _Obj&& __obj) 00916 { 00917 iterator __i = lower_bound(__k); 00918 if (__i == end() || key_comp()(__k, (*__i).first)) 00919 { 00920 __i = emplace_hint(__i, std::piecewise_construct, 00921 std::forward_as_tuple(std::move(__k)), 00922 std::forward_as_tuple( 00923 std::forward<_Obj>(__obj))); 00924 return {__i, true}; 00925 } 00926 (*__i).second = std::forward<_Obj>(__obj); 00927 return {__i, false}; 00928 } 00929 00930 /** 00931 * @brief Attempts to insert or assign a std::pair into the %map. 00932 * @param __hint An iterator that serves as a hint as to where the 00933 * pair should be inserted. 00934 * @param __k Key to use for finding a possibly existing pair in 00935 * the map. 00936 * @param __obj Argument used to generate the .second for a pair 00937 * instance. 00938 * 00939 * @return An iterator that points to the element with key of 00940 * @a __x (may or may not be the %pair passed in). 00941 * 00942 * This function attempts to insert a (key, value) %pair into the %map. 00943 * A %map relies on unique keys and thus a %pair is only inserted if its 00944 * first element (the key) is not already present in the %map. 00945 * If the %pair was already in the %map, the .second of the %pair 00946 * is assigned from __obj. 00947 * 00948 * Insertion requires logarithmic time. 00949 */ 00950 template <typename _Obj> 00951 iterator 00952 insert_or_assign(const_iterator __hint, 00953 const key_type& __k, _Obj&& __obj) 00954 { 00955 iterator __i; 00956 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00957 if (__true_hint.second) 00958 { 00959 return emplace_hint(iterator(__true_hint.second), 00960 std::piecewise_construct, 00961 std::forward_as_tuple(__k), 00962 std::forward_as_tuple( 00963 std::forward<_Obj>(__obj))); 00964 } 00965 __i = iterator(__true_hint.first); 00966 (*__i).second = std::forward<_Obj>(__obj); 00967 return __i; 00968 } 00969 00970 // move-capable overload 00971 template <typename _Obj> 00972 iterator 00973 insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj) 00974 { 00975 iterator __i; 00976 auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k); 00977 if (__true_hint.second) 00978 { 00979 return emplace_hint(iterator(__true_hint.second), 00980 std::piecewise_construct, 00981 std::forward_as_tuple(std::move(__k)), 00982 std::forward_as_tuple( 00983 std::forward<_Obj>(__obj))); 00984 } 00985 __i = iterator(__true_hint.first); 00986 (*__i).second = std::forward<_Obj>(__obj); 00987 return __i; 00988 } 00989 #endif 00990 00991 #if __cplusplus >= 201103L 00992 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00993 // DR 130. Associative erase should return an iterator. 00994 /** 00995 * @brief Erases an element from a %map. 00996 * @param __position An iterator pointing to the element to be erased. 00997 * @return An iterator pointing to the element immediately following 00998 * @a position prior to the element being erased. If no such 00999 * element exists, end() is returned. 01000 * 01001 * This function erases an element, pointed to by the given 01002 * iterator, from a %map. Note that this function only erases 01003 * the element, and that if the element is itself a pointer, 01004 * the pointed-to memory is not touched in any way. Managing 01005 * the pointer is the user's responsibility. 01006 * 01007 * @{ 01008 */ 01009 iterator 01010 erase(const_iterator __position) 01011 { return _M_t.erase(__position); } 01012 01013 // LWG 2059 01014 _GLIBCXX_ABI_TAG_CXX11 01015 iterator 01016 erase(iterator __position) 01017 { return _M_t.erase(__position); } 01018 // @} 01019 #else 01020 /** 01021 * @brief Erases an element from a %map. 01022 * @param __position An iterator pointing to the element to be erased. 01023 * 01024 * This function erases an element, pointed to by the given 01025 * iterator, from a %map. Note that this function only erases 01026 * the element, and that if the element is itself a pointer, 01027 * the pointed-to memory is not touched in any way. Managing 01028 * the pointer is the user's responsibility. 01029 */ 01030 void 01031 erase(iterator __position) 01032 { _M_t.erase(__position); } 01033 #endif 01034 01035 /** 01036 * @brief Erases elements according to the provided key. 01037 * @param __x Key of element to be erased. 01038 * @return The number of elements erased. 01039 * 01040 * This function erases all the elements located by the given key from 01041 * a %map. 01042 * Note that this function only erases the element, and that if 01043 * the element is itself a pointer, the pointed-to memory is not touched 01044 * in any way. Managing the pointer is the user's responsibility. 01045 */ 01046 size_type 01047 erase(const key_type& __x) 01048 { return _M_t.erase(__x); } 01049 01050 #if __cplusplus >= 201103L 01051 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01052 // DR 130. Associative erase should return an iterator. 01053 /** 01054 * @brief Erases a [first,last) range of elements from a %map. 01055 * @param __first Iterator pointing to the start of the range to be 01056 * erased. 01057 * @param __last Iterator pointing to the end of the range to 01058 * be erased. 01059 * @return The iterator @a __last. 01060 * 01061 * This function erases a sequence of elements from a %map. 01062 * Note that this function only erases the element, and that if 01063 * the element is itself a pointer, the pointed-to memory is not touched 01064 * in any way. Managing the pointer is the user's responsibility. 01065 */ 01066 iterator 01067 erase(const_iterator __first, const_iterator __last) 01068 { return _M_t.erase(__first, __last); } 01069 #else 01070 /** 01071 * @brief Erases a [__first,__last) range of elements from a %map. 01072 * @param __first Iterator pointing to the start of the range to be 01073 * erased. 01074 * @param __last Iterator pointing to the end of the range to 01075 * be erased. 01076 * 01077 * This function erases a sequence of elements from a %map. 01078 * Note that this function only erases the element, and that if 01079 * the element is itself a pointer, the pointed-to memory is not touched 01080 * in any way. Managing the pointer is the user's responsibility. 01081 */ 01082 void 01083 erase(iterator __first, iterator __last) 01084 { _M_t.erase(__first, __last); } 01085 #endif 01086 01087 /** 01088 * @brief Swaps data with another %map. 01089 * @param __x A %map of the same element and allocator types. 01090 * 01091 * This exchanges the elements between two maps in constant 01092 * time. (It is only swapping a pointer, an integer, and an 01093 * instance of the @c Compare type (which itself is often 01094 * stateless and empty), so it should be quite fast.) Note 01095 * that the global std::swap() function is specialized such 01096 * that std::swap(m1,m2) will feed to this function. 01097 * 01098 * Whether the allocators are swapped depends on the allocator traits. 01099 */ 01100 void 01101 swap(map& __x) 01102 _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value) 01103 { _M_t.swap(__x._M_t); } 01104 01105 /** 01106 * Erases all elements in a %map. Note that this function only 01107 * erases the elements, and that if the elements themselves are 01108 * pointers, the pointed-to memory is not touched in any way. 01109 * Managing the pointer is the user's responsibility. 01110 */ 01111 void 01112 clear() _GLIBCXX_NOEXCEPT 01113 { _M_t.clear(); } 01114 01115 // observers 01116 /** 01117 * Returns the key comparison object out of which the %map was 01118 * constructed. 01119 */ 01120 key_compare 01121 key_comp() const 01122 { return _M_t.key_comp(); } 01123 01124 /** 01125 * Returns a value comparison object, built from the key comparison 01126 * object out of which the %map was constructed. 01127 */ 01128 value_compare 01129 value_comp() const 01130 { return value_compare(_M_t.key_comp()); } 01131 01132 // [23.3.1.3] map operations 01133 01134 //@{ 01135 /** 01136 * @brief Tries to locate an element in a %map. 01137 * @param __x Key of (key, value) %pair to be located. 01138 * @return Iterator pointing to sought-after element, or end() if not 01139 * found. 01140 * 01141 * This function takes a key and tries to locate the element with which 01142 * the key matches. If successful the function returns an iterator 01143 * pointing to the sought after %pair. If unsuccessful it returns the 01144 * past-the-end ( @c end() ) iterator. 01145 */ 01146 01147 iterator 01148 find(const key_type& __x) 01149 { return _M_t.find(__x); } 01150 01151 #if __cplusplus > 201103L 01152 template<typename _Kt> 01153 auto 01154 find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x)) 01155 { return _M_t._M_find_tr(__x); } 01156 #endif 01157 //@} 01158 01159 //@{ 01160 /** 01161 * @brief Tries to locate an element in a %map. 01162 * @param __x Key of (key, value) %pair to be located. 01163 * @return Read-only (constant) iterator pointing to sought-after 01164 * element, or end() if not found. 01165 * 01166 * This function takes a key and tries to locate the element with which 01167 * the key matches. If successful the function returns a constant 01168 * iterator pointing to the sought after %pair. If unsuccessful it 01169 * returns the past-the-end ( @c end() ) iterator. 01170 */ 01171 01172 const_iterator 01173 find(const key_type& __x) const 01174 { return _M_t.find(__x); } 01175 01176 #if __cplusplus > 201103L 01177 template<typename _Kt> 01178 auto 01179 find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x)) 01180 { return _M_t._M_find_tr(__x); } 01181 #endif 01182 //@} 01183 01184 //@{ 01185 /** 01186 * @brief Finds the number of elements with given key. 01187 * @param __x Key of (key, value) pairs to be located. 01188 * @return Number of elements with specified key. 01189 * 01190 * This function only makes sense for multimaps; for map the result will 01191 * either be 0 (not present) or 1 (present). 01192 */ 01193 size_type 01194 count(const key_type& __x) const 01195 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 01196 01197 #if __cplusplus > 201103L 01198 template<typename _Kt> 01199 auto 01200 count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x)) 01201 { return _M_t._M_count_tr(__x); } 01202 #endif 01203 //@} 01204 01205 //@{ 01206 /** 01207 * @brief Finds the beginning of a subsequence matching given key. 01208 * @param __x Key of (key, value) pair to be located. 01209 * @return Iterator pointing to first element equal to or greater 01210 * than key, or end(). 01211 * 01212 * This function returns the first element of a subsequence of elements 01213 * that matches the given key. If unsuccessful it returns an iterator 01214 * pointing to the first element that has a greater value than given key 01215 * or end() if no such element exists. 01216 */ 01217 iterator 01218 lower_bound(const key_type& __x) 01219 { return _M_t.lower_bound(__x); } 01220 01221 #if __cplusplus > 201103L 01222 template<typename _Kt> 01223 auto 01224 lower_bound(const _Kt& __x) 01225 -> decltype(iterator(_M_t._M_lower_bound_tr(__x))) 01226 { return iterator(_M_t._M_lower_bound_tr(__x)); } 01227 #endif 01228 //@} 01229 01230 //@{ 01231 /** 01232 * @brief Finds the beginning of a subsequence matching given key. 01233 * @param __x Key of (key, value) pair to be located. 01234 * @return Read-only (constant) iterator pointing to first element 01235 * equal to or greater than key, or end(). 01236 * 01237 * This function returns the first element of a subsequence of elements 01238 * that matches the given key. If unsuccessful it returns an iterator 01239 * pointing to the first element that has a greater value than given key 01240 * or end() if no such element exists. 01241 */ 01242 const_iterator 01243 lower_bound(const key_type& __x) const 01244 { return _M_t.lower_bound(__x); } 01245 01246 #if __cplusplus > 201103L 01247 template<typename _Kt> 01248 auto 01249 lower_bound(const _Kt& __x) const 01250 -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x))) 01251 { return const_iterator(_M_t._M_lower_bound_tr(__x)); } 01252 #endif 01253 //@} 01254 01255 //@{ 01256 /** 01257 * @brief Finds the end of a subsequence matching given key. 01258 * @param __x Key of (key, value) pair to be located. 01259 * @return Iterator pointing to the first element 01260 * greater than key, or end(). 01261 */ 01262 iterator 01263 upper_bound(const key_type& __x) 01264 { return _M_t.upper_bound(__x); } 01265 01266 #if __cplusplus > 201103L 01267 template<typename _Kt> 01268 auto 01269 upper_bound(const _Kt& __x) 01270 -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) 01271 { return iterator(_M_t._M_upper_bound_tr(__x)); } 01272 #endif 01273 //@} 01274 01275 //@{ 01276 /** 01277 * @brief Finds the end of a subsequence matching given key. 01278 * @param __x Key of (key, value) pair to be located. 01279 * @return Read-only (constant) iterator pointing to first iterator 01280 * greater than key, or end(). 01281 */ 01282 const_iterator 01283 upper_bound(const key_type& __x) const 01284 { return _M_t.upper_bound(__x); } 01285 01286 #if __cplusplus > 201103L 01287 template<typename _Kt> 01288 auto 01289 upper_bound(const _Kt& __x) const 01290 -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x))) 01291 { return const_iterator(_M_t._M_upper_bound_tr(__x)); } 01292 #endif 01293 //@} 01294 01295 //@{ 01296 /** 01297 * @brief Finds a subsequence matching given key. 01298 * @param __x Key of (key, value) pairs to be located. 01299 * @return Pair of iterators that possibly points to the subsequence 01300 * matching given key. 01301 * 01302 * This function is equivalent to 01303 * @code 01304 * std::make_pair(c.lower_bound(val), 01305 * c.upper_bound(val)) 01306 * @endcode 01307 * (but is faster than making the calls separately). 01308 * 01309 * This function probably only makes sense for multimaps. 01310 */ 01311 std::pair<iterator, iterator> 01312 equal_range(const key_type& __x) 01313 { return _M_t.equal_range(__x); } 01314 01315 #if __cplusplus > 201103L 01316 template<typename _Kt> 01317 auto 01318 equal_range(const _Kt& __x) 01319 -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) 01320 { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } 01321 #endif 01322 //@} 01323 01324 //@{ 01325 /** 01326 * @brief Finds a subsequence matching given key. 01327 * @param __x Key of (key, value) pairs to be located. 01328 * @return Pair of read-only (constant) iterators that possibly points 01329 * to the subsequence matching given key. 01330 * 01331 * This function is equivalent to 01332 * @code 01333 * std::make_pair(c.lower_bound(val), 01334 * c.upper_bound(val)) 01335 * @endcode 01336 * (but is faster than making the calls separately). 01337 * 01338 * This function probably only makes sense for multimaps. 01339 */ 01340 std::pair<const_iterator, const_iterator> 01341 equal_range(const key_type& __x) const 01342 { return _M_t.equal_range(__x); } 01343 01344 #if __cplusplus > 201103L 01345 template<typename _Kt> 01346 auto 01347 equal_range(const _Kt& __x) const 01348 -> decltype(pair<const_iterator, const_iterator>( 01349 _M_t._M_equal_range_tr(__x))) 01350 { 01351 return pair<const_iterator, const_iterator>( 01352 _M_t._M_equal_range_tr(__x)); 01353 } 01354 #endif 01355 //@} 01356 01357 template<typename _K1, typename _T1, typename _C1, typename _A1> 01358 friend bool 01359 operator==(const map<_K1, _T1, _C1, _A1>&, 01360 const map<_K1, _T1, _C1, _A1>&); 01361 01362 template<typename _K1, typename _T1, typename _C1, typename _A1> 01363 friend bool 01364 operator<(const map<_K1, _T1, _C1, _A1>&, 01365 const map<_K1, _T1, _C1, _A1>&); 01366 }; 01367 01368 /** 01369 * @brief Map equality comparison. 01370 * @param __x A %map. 01371 * @param __y A %map of the same type as @a x. 01372 * @return True iff the size and elements of the maps are equal. 01373 * 01374 * This is an equivalence relation. It is linear in the size of the 01375 * maps. Maps are considered equivalent if their sizes are equal, 01376 * and if corresponding elements compare equal. 01377 */ 01378 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01379 inline bool 01380 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01381 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01382 { return __x._M_t == __y._M_t; } 01383 01384 /** 01385 * @brief Map ordering relation. 01386 * @param __x A %map. 01387 * @param __y A %map of the same type as @a x. 01388 * @return True iff @a x is lexicographically less than @a y. 01389 * 01390 * This is a total ordering relation. It is linear in the size of the 01391 * maps. The elements must be comparable with @c <. 01392 * 01393 * See std::lexicographical_compare() for how the determination is made. 01394 */ 01395 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01396 inline bool 01397 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01398 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01399 { return __x._M_t < __y._M_t; } 01400 01401 /// Based on operator== 01402 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01403 inline bool 01404 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01405 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01406 { return !(__x == __y); } 01407 01408 /// Based on operator< 01409 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01410 inline bool 01411 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01412 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01413 { return __y < __x; } 01414 01415 /// Based on operator< 01416 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01417 inline bool 01418 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01419 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01420 { return !(__y < __x); } 01421 01422 /// Based on operator< 01423 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01424 inline bool 01425 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01426 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01427 { return !(__x < __y); } 01428 01429 /// See std::map::swap(). 01430 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01431 inline void 01432 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 01433 map<_Key, _Tp, _Compare, _Alloc>& __y) 01434 _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) 01435 { __x.swap(__y); } 01436 01437 _GLIBCXX_END_NAMESPACE_CONTAINER 01438 01439 #if __cplusplus > 201402L 01440 _GLIBCXX_BEGIN_NAMESPACE_VERSION 01441 // Allow std::map access to internals of compatible maps. 01442 template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc, 01443 typename _Cmp2> 01444 struct 01445 _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>, 01446 _Cmp2> 01447 { 01448 private: 01449 friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>; 01450 01451 static auto& 01452 _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map) 01453 { return __map._M_t; } 01454 01455 static auto& 01456 _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map) 01457 { return __map._M_t; } 01458 }; 01459 _GLIBCXX_END_NAMESPACE_VERSION 01460 #endif // C++17 01461 01462 } // namespace std 01463 01464 #endif /* _STL_MAP_H */