patch-2.4.8 linux/arch/ia64/kernel/smpboot.c
Next file: linux/arch/ia64/kernel/sys_ia64.c
Previous file: linux/arch/ia64/kernel/smp.c
Back to the patch index
Back to the overall index
- Lines: 565
- Date:
Tue Jul 31 10:30:08 2001
- Orig file:
v2.4.7/linux/arch/ia64/kernel/smpboot.c
- Orig date:
Thu Apr 5 12:51:47 2001
diff -u --recursive --new-file v2.4.7/linux/arch/ia64/kernel/smpboot.c linux/arch/ia64/kernel/smpboot.c
@@ -1,4 +1,563 @@
/*
+ * SMP boot-related support
+ *
+ * Copyright (C) 2001 David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
+ * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
*/
-/* place holder... */
+
+#define __KERNEL_SYSCALLS__
+
+#include <linux/config.h>
+
+#include <linux/bootmem.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kernel.h>
+#include <linux/kernel_stat.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/smp_lock.h>
+#include <linux/spinlock.h>
+
+#include <asm/atomic.h>
+#include <asm/bitops.h>
+#include <asm/cache.h>
+#include <asm/current.h>
+#include <asm/delay.h>
+#include <asm/efi.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/machvec.h>
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace.h>
+#include <asm/sal.h>
+#include <asm/system.h>
+#include <asm/unistd.h>
+
+#if SMP_DEBUG
+#define Dprintk(x...) printk(x)
+#else
+#define Dprintk(x...)
+#endif
+
+
+/*
+ * ITC synchronization related stuff:
+ */
+#define MASTER 0
+#define SLAVE (SMP_CACHE_BYTES/8)
+
+#define NUM_ROUNDS 64 /* magic value */
+#define NUM_ITERS 5 /* likewise */
+
+static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED;
+static volatile unsigned long go[SLAVE + 1];
+
+#define DEBUG_ITC_SYNC 0
+
+extern void __init calibrate_delay(void);
+extern void start_ap(void);
+
+int cpucount;
+
+/* Setup configured maximum number of CPUs to activate */
+static int max_cpus = -1;
+
+/* Total count of live CPUs */
+int smp_num_cpus = 1;
+
+/* Bitmask of currently online CPUs */
+volatile unsigned long cpu_online_map;
+
+/* which logical CPU number maps to which CPU (physical APIC ID) */
+volatile int ia64_cpu_to_sapicid[NR_CPUS];
+
+static volatile unsigned long cpu_callin_map;
+
+struct smp_boot_data smp_boot_data __initdata;
+
+/* Set when the idlers are all forked */
+volatile int smp_threads_ready;
+
+unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
+
+char __initdata no_int_routing;
+
+unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
+
+/*
+ * Setup routine for controlling SMP activation
+ *
+ * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
+ * activation entirely (the MPS table probe still happens, though).
+ *
+ * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
+ * greater than 0, limits the maximum number of CPUs activated in
+ * SMP mode to <NUM>.
+ */
+
+static int __init
+nosmp (char *str)
+{
+ max_cpus = 0;
+ return 1;
+}
+
+__setup("nosmp", nosmp);
+
+static int __init
+maxcpus (char *str)
+{
+ get_option(&str, &max_cpus);
+ return 1;
+}
+
+__setup("maxcpus=", maxcpus);
+
+static int __init
+nointroute (char *str)
+{
+ no_int_routing = 1;
+ return 1;
+}
+
+__setup("nointroute", nointroute);
+
+void
+sync_master (void *arg)
+{
+ unsigned long flags, i;
+
+ go[MASTER] = 0;
+
+ local_irq_save(flags);
+ {
+ for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
+ while (!go[MASTER]);
+ go[MASTER] = 0;
+ go[SLAVE] = ia64_get_itc();
+ }
+ }
+ local_irq_restore(flags);
+}
+
+/*
+ * Return the number of cycles by which our itc differs from the itc on the master
+ * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
+ * negative that it is behind.
+ */
+static inline long
+get_delta (long *rt, long *master)
+{
+ unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
+ unsigned long tcenter, t0, t1, tm;
+ long i;
+
+ for (i = 0; i < NUM_ITERS; ++i) {
+ t0 = ia64_get_itc();
+ go[MASTER] = 1;
+ while (!(tm = go[SLAVE]));
+ go[SLAVE] = 0;
+ t1 = ia64_get_itc();
+
+ if (t1 - t0 < best_t1 - best_t0)
+ best_t0 = t0, best_t1 = t1, best_tm = tm;
+ }
+
+ *rt = best_t1 - best_t0;
+ *master = best_tm - best_t0;
+
+ /* average best_t0 and best_t1 without overflow: */
+ tcenter = (best_t0/2 + best_t1/2);
+ if (best_t0 % 2 + best_t1 % 2 == 2)
+ ++tcenter;
+ return tcenter - best_tm;
+}
+
+/*
+ * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
+ * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
+ * unaccounted-for errors (such as getting a machine check in the middle of a calibration
+ * step). The basic idea is for the slave to ask the master what itc value it has and to
+ * read its own itc before and after the master responds. Each iteration gives us three
+ * timestamps:
+ *
+ * slave master
+ *
+ * t0 ---\
+ * ---\
+ * --->
+ * tm
+ * /---
+ * /---
+ * t1 <---
+ *
+ *
+ * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
+ * and t1. If we achieve this, the clocks are synchronized provided the interconnect
+ * between the slave and the master is symmetric. Even if the interconnect were
+ * asymmetric, we would still know that the synchronization error is smaller than the
+ * roundtrip latency (t0 - t1).
+ *
+ * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
+ * within one or two cycles. However, we can only *guarantee* that the synchronization is
+ * accurate to within a round-trip time, which is typically in the range of several
+ * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
+ * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
+ * than half a micro second or so.
+ */
+void
+ia64_sync_itc (unsigned int master)
+{
+ long i, delta, adj, adjust_latency = 0, done = 0;
+ unsigned long flags, rt, master_time_stamp, bound;
+#if DEBUG_ITC_SYNC
+ struct {
+ long rt; /* roundtrip time */
+ long master; /* master's timestamp */
+ long diff; /* difference between midpoint and master's timestamp */
+ long lat; /* estimate of itc adjustment latency */
+ } t[NUM_ROUNDS];
+#endif
+
+ go[MASTER] = 1;
+
+ if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
+ printk("sync_itc: failed to get attention of CPU %u!\n", master);
+ return;
+ }
+
+ while (go[MASTER]); /* wait for master to be ready */
+
+ spin_lock_irqsave(&itc_sync_lock, flags);
+ {
+ for (i = 0; i < NUM_ROUNDS; ++i) {
+ delta = get_delta(&rt, &master_time_stamp);
+ if (delta == 0) {
+ done = 1; /* let's lock on to this... */
+ bound = rt;
+ }
+
+ if (!done) {
+ if (i > 0) {
+ adjust_latency += -delta;
+ adj = -delta + adjust_latency/4;
+ } else
+ adj = -delta;
+
+ ia64_set_itc(ia64_get_itc() + adj);
+ }
+#if DEBUG_ITC_SYNC
+ t[i].rt = rt;
+ t[i].master = master_time_stamp;
+ t[i].diff = delta;
+ t[i].lat = adjust_latency/4;
+#endif
+ }
+ }
+ spin_unlock_irqrestore(&itc_sync_lock, flags);
+
+#if DEBUG_ITC_SYNC
+ for (i = 0; i < NUM_ROUNDS; ++i)
+ printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
+ t[i].rt, t[i].master, t[i].diff, t[i].lat);
+#endif
+
+ printk("CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, maxerr %lu cycles)\n",
+ smp_processor_id(), master, delta, rt);
+}
+
+/*
+ * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
+ */
+static inline void __init
+smp_setup_percpu_timer (void)
+{
+ local_cpu_data->prof_counter = 1;
+ local_cpu_data->prof_multiplier = 1;
+}
+
+/*
+ * Architecture specific routine called by the kernel just before init is
+ * fired off. This allows the BP to have everything in order [we hope].
+ * At the end of this all the APs will hit the system scheduling and off
+ * we go. Each AP will jump through the kernel
+ * init into idle(). At this point the scheduler will one day take over
+ * and give them jobs to do. smp_callin is a standard routine
+ * we use to track CPUs as they power up.
+ */
+
+static volatile atomic_t smp_commenced = ATOMIC_INIT(0);
+
+void __init
+smp_commence (void)
+{
+ /*
+ * Lets the callins below out of their loop.
+ */
+ Dprintk("Setting commenced=1, go go go\n");
+
+ wmb();
+ atomic_set(&smp_commenced,1);
+}
+
+
+void __init
+smp_callin (void)
+{
+ int cpuid, phys_id;
+ extern void ia64_init_itm(void);
+
+#ifdef CONFIG_PERFMON
+ extern void perfmon_init_percpu(void);
+#endif
+
+ cpuid = smp_processor_id();
+ phys_id = hard_smp_processor_id();
+
+ if (test_and_set_bit(cpuid, &cpu_online_map)) {
+ printk("huh, phys CPU#0x%x, CPU#0x%x already present??\n",
+ phys_id, cpuid);
+ BUG();
+ }
+
+ smp_setup_percpu_timer();
+
+ /*
+ * Synchronize the ITC with the BP
+ */
+ Dprintk("Going to syncup ITC with BP.\n");
+
+ ia64_sync_itc(0);
+ /*
+ * Get our bogomips.
+ */
+ ia64_init_itm();
+#ifdef CONFIG_PERFMON
+ perfmon_init_percpu();
+#endif
+
+ local_irq_enable();
+ calibrate_delay();
+ local_cpu_data->loops_per_jiffy = loops_per_jiffy;
+ /*
+ * Allow the master to continue.
+ */
+ set_bit(cpuid, &cpu_callin_map);
+ Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
+}
+
+
+/*
+ * Activate a secondary processor. head.S calls this.
+ */
+int __init
+start_secondary (void *unused)
+{
+ extern int cpu_idle (void);
+
+ efi_map_pal_code();
+ cpu_init();
+ smp_callin();
+ Dprintk("CPU %d is set to go. \n", smp_processor_id());
+ while (!atomic_read(&smp_commenced))
+ ;
+
+ Dprintk("CPU %d is starting idle. \n", smp_processor_id());
+ return cpu_idle();
+}
+
+static int __init
+fork_by_hand (void)
+{
+ /*
+ * don't care about the eip and regs settings since
+ * we'll never reschedule the forked task.
+ */
+ return do_fork(CLONE_VM|CLONE_PID, 0, 0, 0);
+}
+
+static void __init
+do_boot_cpu (int sapicid)
+{
+ struct task_struct *idle;
+ int timeout, cpu;
+
+ cpu = ++cpucount;
+ /*
+ * We can't use kernel_thread since we must avoid to
+ * reschedule the child.
+ */
+ if (fork_by_hand() < 0)
+ panic("failed fork for CPU %d", cpu);
+
+ /*
+ * We remove it from the pidhash and the runqueue
+ * once we got the process:
+ */
+ idle = init_task.prev_task;
+ if (!idle)
+ panic("No idle process for CPU %d", cpu);
+
+ idle->processor = cpu;
+ ia64_cpu_to_sapicid[cpu] = sapicid;
+ idle->has_cpu = 1; /* we schedule the first task manually */
+
+ del_from_runqueue(idle);
+ unhash_process(idle);
+ init_tasks[cpu] = idle;
+
+ Dprintk("Sending Wakeup Vector to AP 0x%x/0x%x.\n", cpu, sapicid);
+
+ platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
+
+ /*
+ * Wait 10s total for the AP to start
+ */
+ Dprintk("Waiting on callin_map ...");
+ for (timeout = 0; timeout < 100000; timeout++) {
+ Dprintk(".");
+ if (test_bit(cpu, &cpu_callin_map))
+ break; /* It has booted */
+ udelay(100);
+ }
+ Dprintk("\n");
+
+ if (test_bit(cpu, &cpu_callin_map)) {
+ /* number CPUs logically, starting from 1 (BSP is 0) */
+ printk("CPU%d: ", cpu);
+ /*print_cpu_info(&cpu_data[cpu]); */
+ printk("CPU has booted.\n");
+ } else {
+ printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
+ ia64_cpu_to_sapicid[cpu] = -1;
+ cpucount--;
+ }
+}
+
+/*
+ * Cycle through the APs sending Wakeup IPIs to boot each.
+ */
+void __init
+smp_boot_cpus (void)
+{
+ int sapicid, cpu;
+ int boot_cpu_id = hard_smp_processor_id();
+
+ /*
+ * Initialize the logical to physical CPU number mapping
+ * and the per-CPU profiling counter/multiplier
+ */
+
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ ia64_cpu_to_sapicid[cpu] = -1;
+ smp_setup_percpu_timer();
+
+ /*
+ * We have the boot CPU online for sure.
+ */
+ set_bit(0, &cpu_online_map);
+ set_bit(0, &cpu_callin_map);
+
+ local_cpu_data->loops_per_jiffy = loops_per_jiffy;
+ ia64_cpu_to_sapicid[0] = boot_cpu_id;
+
+ printk("Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
+
+ global_irq_holder = 0;
+ current->processor = 0;
+ init_idle();
+
+ /*
+ * If SMP should be disabled, then really disable it!
+ */
+ if (!max_cpus || (max_cpus < -1)) {
+ printk(KERN_INFO "SMP mode deactivated.\n");
+ cpu_online_map = 1;
+ smp_num_cpus = 1;
+ goto smp_done;
+ }
+ if (max_cpus != -1)
+ printk (KERN_INFO "Limiting CPUs to %d\n", max_cpus);
+
+ if (smp_boot_data.cpu_count > 1) {
+
+ printk(KERN_INFO "SMP: starting up secondaries.\n");
+
+ for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) {
+ /*
+ * Don't even attempt to start the boot CPU!
+ */
+ sapicid = smp_boot_data.cpu_phys_id[cpu];
+ if ((sapicid == -1) || (sapicid == hard_smp_processor_id()))
+ continue;
+
+ if ((max_cpus > 0) && (cpucount + 1 >= max_cpus))
+ break;
+
+ do_boot_cpu(sapicid);
+
+ /*
+ * Make sure we unmap all failed CPUs
+ */
+ if (ia64_cpu_to_sapicid[cpu] == -1)
+ printk("phys CPU#%d not responding - cannot use it.\n", cpu);
+ }
+
+ smp_num_cpus = cpucount + 1;
+
+ /*
+ * Allow the user to impress friends.
+ */
+
+ printk("Before bogomips.\n");
+ if (!cpucount) {
+ printk(KERN_ERR "Error: only one processor found.\n");
+ } else {
+ unsigned long bogosum = 0;
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ if (cpu_online_map & (1<<cpu))
+ bogosum += cpu_data(cpu)->loops_per_jiffy;
+
+ printk(KERN_INFO"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
+ cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
+ }
+ }
+ smp_done:
+ ;
+}
+
+/*
+ * Assume that CPU's have been discovered by some platform-dependant interface. For
+ * SoftSDV/Lion, that would be ACPI.
+ *
+ * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
+ */
+void __init
+init_smp_config(void)
+{
+ struct fptr {
+ unsigned long fp;
+ unsigned long gp;
+ } *ap_startup;
+ long sal_ret;
+
+ /* Tell SAL where to drop the AP's. */
+ ap_startup = (struct fptr *) start_ap;
+ sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
+ __pa(ap_startup->fp), __pa(ap_startup->gp), 0, 0, 0, 0);
+ if (sal_ret < 0) {
+ printk("SMP: Can't set SAL AP Boot Rendezvous: %s\n Forcing UP mode\n",
+ ia64_sal_strerror(sal_ret));
+ max_cpus = 0;
+ smp_num_cpus = 1;
+ }
+}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)