patch-2.4.7 linux/drivers/net/au1000_eth.c

Next file: linux/drivers/net/au1000_eth.h
Previous file: linux/drivers/net/at1700.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.4.6/linux/drivers/net/au1000_eth.c linux/drivers/net/au1000_eth.c
@@ -0,0 +1,1266 @@
+/*
+ *
+ * Alchemy Semi Au1000 ethernet driver
+ *
+ * Copyright 2001 MontaVista Software Inc.
+ * Author: MontaVista Software, Inc.
+ *         	ppopov@mvista.com or source@mvista.com
+ *
+ * ########################################################################
+ *
+ *  This program is free software; you can distribute it and/or modify it
+ *  under the terms of the GNU General Public License (Version 2) as
+ *  published by the Free Software Foundation.
+ *
+ *  This program is distributed in the hope it will be useful, but WITHOUT
+ *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ *  for more details.
+ *
+ *  You should have received a copy of the GNU General Public License along
+ *  with this program; if not, write to the Free Software Foundation, Inc.,
+ *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
+ *
+ * ########################################################################
+ *
+ * 
+ */
+
+#ifndef __mips__
+#error This driver only works with MIPS architectures!
+#endif
+
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/errno.h>
+#include <linux/in.h>
+#include <linux/ioport.h>
+#include <linux/malloc.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <asm/irq.h>
+#include <asm/bitops.h>
+#include <asm/io.h>
+
+#include <asm/au1000.h>
+#include "au1000_eth.h"
+
+#ifdef AU1000_ETH_DEBUG
+static int au1000_debug = 10;
+#else
+static int au1000_debug = 3;
+#endif
+
+// prototypes
+static void *dma_alloc(size_t, dma_addr_t *);
+static void dma_free(void *, size_t);
+static void hard_stop(struct net_device *);
+static int __init au1000_probe1(struct net_device *, long, int, int);
+static int au1000_init(struct net_device *);
+static int au1000_open(struct net_device *);
+static int au1000_close(struct net_device *);
+static int au1000_tx(struct sk_buff *, struct net_device *);
+static int au1000_rx(struct net_device *);
+static void au1000_interrupt(int, void *, struct pt_regs *);
+static void au1000_tx_timeout(struct net_device *);
+static int au1000_set_config(struct net_device *dev, struct ifmap *map);
+static void set_rx_mode(struct net_device *);
+static struct net_device_stats *au1000_get_stats(struct net_device *);
+static inline void update_tx_stats(struct net_device *, u32, u32);
+static inline void update_rx_stats(struct net_device *, u32);
+static void au1000_timer(unsigned long);
+static void cleanup_buffers(struct net_device *);
+static int au1000_ioctl(struct net_device *, struct ifreq *, int);
+static int mdio_read(struct net_device *, int, int);
+static void mdio_write(struct net_device *, int, int, u16);
+static inline void sync(void);
+
+extern  void ack_rise_edge_irq(unsigned int);
+
+static int next_dev;
+
+/*
+ * Theory of operation
+ *
+ * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 
+ * There are four receive and four transmit descriptors.  These 
+ * descriptors are not in memory; rather, they are just a set of 
+ * hardware registers.
+ *
+ * Since the Au1000 has a coherent data cache, the receive and
+ * transmit buffers are allocated from the KSEG0 segment. The 
+ * hardware registers, however, are still mapped at KSEG1 to
+ * make sure there's no out-of-order writes, and that all writes
+ * complete immediately.
+ */
+
+
+/*
+ * Base address and interupt of the Au1000 ethernet macs
+ */
+static struct {
+	unsigned int port;
+	int irq;
+} au1000_iflist[NUM_INTERFACES] = {
+	{AU1000_ETH0_BASE, AU1000_ETH0_IRQ}, 
+	{AU1000_ETH1_BASE, AU1000_ETH1_IRQ}
+};
+
+
+static char version[] __devinitdata =
+    "au1000eth.c:0.1 ppopov@mvista.com\n";
+
+// FIX! Need real Ethernet addresses
+static unsigned char au1000_mac_addr[2][6] __devinitdata = { 
+	{0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00},
+	{0x00, 0x50, 0xc2, 0x0c, 0x40, 0x00}
+};
+
+#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
+#define RUN_AT(x) (jiffies + (x))
+
+// For reading/writing 32-bit words from/to DMA memory
+#define cpu_to_dma32 cpu_to_be32
+#define dma32_to_cpu be32_to_cpu
+
+/* CPU pipeline flush */
+static inline void sync(void)
+{
+	asm volatile ("sync");
+}
+
+/* FIXME 
+ * All of the PHY code really should be detached from the MAC 
+ * code.
+ */
+
+static char *phy_link[] = 
+	{"unknown", 
+	"10Base2", "10BaseT", 
+	"AUI",
+	"100BaseT", "100BaseTX", "100BaseFX"};
+
+int bcm_5201_init(struct net_device *dev, int phy_addr)
+{
+	s16 data;
+	
+	/* Stop auto-negotiation */
+	//printk("bcm_5201_init\n");
+	data = mdio_read(dev, phy_addr, MII_CONTROL);
+	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
+
+	/* Set advertisement to 10/100 and Half/Full duplex
+	 * (full capabilities) */
+	data = mdio_read(dev, phy_addr, MII_ANADV);
+	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
+	mdio_write(dev, phy_addr, MII_ANADV, data);
+	
+	/* Restart auto-negotiation */
+	data = mdio_read(dev, phy_addr, MII_CONTROL);
+	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
+	mdio_write(dev, phy_addr, MII_CONTROL, data);
+	//dump_mii(dev, phy_addr);
+	return 0;
+}
+
+int bcm_5201_reset(struct net_device *dev, int phy_addr)
+{
+	s16 mii_control, timeout;
+	
+	//printk("bcm_5201_reset\n");
+	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+	mdelay(1);
+	for (timeout = 100; timeout > 0; --timeout) {
+		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+		if ((mii_control & MII_CNTL_RESET) == 0)
+			break;
+		mdelay(1);
+	}
+	if (mii_control & MII_CNTL_RESET) {
+		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+		return -1;
+	}
+	return 0;
+}
+
+int 
+bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+	u16 mii_data;
+	struct au1000_private *aup;
+
+	if (!dev) {
+		printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
+		return -1;
+	}
+	aup = (struct au1000_private *) dev->priv;
+
+	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+	if (mii_data & MII_STAT_LINK) {
+		*link = 1;
+		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
+		if (mii_data & MII_AUX_100) {
+			if (mii_data & MII_AUX_FDX) {
+				*speed = IF_PORT_100BASEFX;
+				dev->if_port = IF_PORT_100BASEFX;
+			}
+			else {
+				*speed = IF_PORT_100BASETX;
+				dev->if_port = IF_PORT_100BASETX;
+			}
+		}
+		else  {
+			*speed = IF_PORT_10BASET;
+			dev->if_port = IF_PORT_10BASET;
+		}
+
+	}
+	else {
+		*link = 0;
+		*speed = 0;
+	}
+	return 0;
+}
+
+
+int am79c901_init(struct net_device *dev, int phy_addr)
+{
+	printk("am79c901_init\n");
+	return 0;
+}
+
+int am79c901_reset(struct net_device *dev, int phy_addr)
+{
+	printk("am79c901_reset\n");
+	return 0;
+}
+
+int 
+am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+	return 0;
+}
+
+struct phy_ops bcm_5201_ops = {
+	bcm_5201_init,
+	bcm_5201_reset,
+	bcm_5201_status,
+};
+
+struct phy_ops am79c901_ops = {
+	am79c901_init,
+	am79c901_reset,
+	am79c901_status,
+};
+
+static struct mii_chip_info {
+	const char * name;
+	u16 phy_id0;
+	u16 phy_id1;
+	struct phy_ops *phy_ops;	
+} mii_chip_table[] = {
+	{"Broadcom BCM5201 10/100 BaseT PHY",  0x0040, 0x6212, &bcm_5201_ops },
+	{"AMD 79C901 HomePNA PHY",  0x0000, 0x35c8, &am79c901_ops },
+	{0,},
+};
+
+static int mdio_read(struct net_device *dev, int phy_id, int reg)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	u32 timedout = 20;
+	u32 mii_control;
+
+	while (aup->mac->mii_control & MAC_MII_BUSY) {
+		mdelay(1);
+		if (--timedout == 0) {
+			printk(KERN_ERR "%s: read_MII busy timeout!!\n", dev->name);
+			return -1;
+		}
+	}
+
+	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
+		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ;
+
+	aup->mac->mii_control = mii_control;
+
+	timedout = 20;
+	while (aup->mac->mii_control & MAC_MII_BUSY) {
+		mdelay(1);
+		if (--timedout == 0) {
+			printk(KERN_ERR "%s: mdio_read busy timeout!!\n", dev->name);
+			return -1;
+		}
+	}
+	return (int)aup->mac->mii_data;
+}
+
+static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	u32 timedout = 20;
+	u32 mii_control;
+
+	while (aup->mac->mii_control & MAC_MII_BUSY) {
+		mdelay(1);
+		if (--timedout == 0) {
+			printk(KERN_ERR "%s: mdio_write busy timeout!!\n", dev->name);
+			return;
+		}
+	}
+
+	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
+		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE;
+
+	aup->mac->mii_data = value;
+	aup->mac->mii_control = mii_control;
+}
+
+
+static void dump_mii(struct net_device *dev, int phy_id)
+{
+	int i, val;
+
+	for (i = 0; i < 7; i++) {
+		if ((val = mdio_read(dev, phy_id, i)) >= 0)
+			printk("%s: MII Reg %d=%x\n", dev->name, i, val);
+	}
+	for (i = 16; i < 25; i++) {
+		if ((val = mdio_read(dev, phy_id, i)) >= 0)
+			printk("%s: MII Reg %d=%x\n", dev->name, i, val);
+	}
+}
+
+static int __init mii_probe (struct net_device * dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	int phy_addr;
+
+	aup->mii = NULL;
+
+	/* search for total of 32 possible mii phy addresses */
+	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
+		u16 mii_status;
+		u16 phy_id0, phy_id1;
+		int i;
+
+		mii_status = mdio_read(dev, phy_addr, MII_STATUS);
+		if (mii_status == 0xffff || mii_status == 0x0000)
+			/* the mii is not accessable, try next one */
+			continue;
+
+		phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0);
+		phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);
+
+		/* search our mii table for the current mii */ 
+		for (i = 0; mii_chip_table[i].phy_id1; i++)
+			if (phy_id0 == mii_chip_table[i].phy_id0 &&
+			    phy_id1 == mii_chip_table[i].phy_id1) {
+				struct mii_phy * mii_phy;
+
+				printk(KERN_INFO "%s: %s found at phy address %d\n",
+				       dev->name, mii_chip_table[i].name, phy_addr);
+				if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) != NULL) {
+					mii_phy->chip_info = mii_chip_table+i;
+					mii_phy->phy_addr = phy_addr;
+					//mii_phy->status = mdio_read(dev, phy_addr, MII_STATUS);
+					mii_phy->next = aup->mii;
+					aup->phy_ops = mii_chip_table[i].phy_ops;
+					aup->mii = mii_phy;
+				}
+				/* the current mii is on our mii_info_table,
+				   try next address */
+				break;
+			}
+	}
+
+	if (aup->mii == NULL) {
+		printk(KERN_ERR "%s: No MII transceivers found!\n", dev->name);
+		return -1;
+	}
+
+	/* use last PHY */
+	aup->phy_addr = aup->mii->phy_addr;
+	printk(KERN_INFO "%s: Using %s as default\n", dev->name, aup->mii->chip_info->name);
+
+	return 0;
+}
+
+
+/*
+ * Buffer allocation/deallocation routines. The buffer descriptor returned
+ * has the virtual and dma address of a buffer suitable for 
+ * both, receive and transmit operations.
+ */
+static db_dest_t *GetFreeDB(struct au1000_private *aup)
+{
+	db_dest_t *pDB;
+	pDB = aup->pDBfree;
+
+	if (pDB) {
+		aup->pDBfree = pDB->pnext;
+	}
+	//printk("GetFreeDB: %x\n", pDB);
+	return pDB;
+}
+
+void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
+{
+	db_dest_t *pDBfree = aup->pDBfree;
+	if (pDBfree)
+		pDBfree->pnext = pDB;
+	aup->pDBfree = pDB;
+}
+
+
+/*
+  DMA memory allocation, derived from pci_alloc_consistent.
+  However, the Au1000 data cache is coherent (when programmed
+  so), therefore we return KSEG0 address, not KSEG1.
+*/
+static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
+{
+	void *ret;
+	int gfp = GFP_ATOMIC | GFP_DMA;
+
+	ret = (void *) __get_free_pages(gfp, get_order(size));
+
+	if (ret != NULL) {
+		memset(ret, 0, size);
+		*dma_handle = virt_to_bus(ret);
+		ret = KSEG0ADDR(ret);
+	}
+	return ret;
+}
+
+
+static void dma_free(void *vaddr, size_t size)
+{
+	vaddr = KSEG0ADDR(vaddr);
+	free_pages((unsigned long) vaddr, get_order(size));
+}
+
+
+static void hard_stop(struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	if (au1000_debug > 4)
+		printk(KERN_INFO "%s: hard stop\n", dev->name);
+
+	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
+	sync();
+	mdelay(10);
+}
+
+
+static void reset_mac(struct net_device *dev)
+{
+	u32 flags;
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	if (au1000_debug > 4)
+		printk(KERN_INFO "%s: reset mac, aup %x\n", dev->name, (unsigned)aup);
+
+	spin_lock_irqsave(&aup->lock, flags);
+	del_timer(&aup->timer);
+	hard_stop(dev);
+	*aup->enable |= MAC_DMA_RESET;
+	sync();
+	mdelay(10);
+	aup->tx_full = 0;
+	spin_unlock_irqrestore(&aup->lock, flags);
+}
+
+static void cleanup_buffers(struct net_device *dev)
+{
+	int i;
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	for (i=0; i<NUM_RX_DMA; i++) {
+		if (aup->rx_db_inuse[i]) {
+			ReleaseDB(aup, aup->rx_db_inuse[i]);
+			aup->rx_db_inuse[i] = 0;
+		}
+	}
+
+	for (i=0; i<NUM_TX_DMA; i++) {
+		if (aup->tx_db_inuse[i]) {
+			ReleaseDB(aup, aup->tx_db_inuse[i]);
+			aup->tx_db_inuse[i] = 0;
+		}
+	}
+}
+
+
+/* 
+ * Setup the receive and transmit "rings".  These pointers are the addresses
+ * of the rx and tx MAC DMA registers so they are fixed by the hardware --
+ * these are not descriptors sitting in memory.
+ */
+static void 
+setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
+{
+	int i;
+
+	for (i=0; i<NUM_RX_DMA; i++) {
+		aup->rx_dma_ring[i] = (volatile rx_dma_t *) ioremap_nocache((unsigned long)
+					(rx_base + sizeof(rx_dma_t)*i), sizeof(rx_dma_t));
+	}
+	for (i=0; i<NUM_TX_DMA; i++) {
+		aup->tx_dma_ring[i] = (volatile tx_dma_t *)ioremap_nocache((unsigned long)
+				(tx_base + sizeof(tx_dma_t)*i), sizeof(tx_dma_t));
+	}
+}
+
+/*
+ * Probe for a AU1000 ethernet controller.
+ */
+int __init au1000_probe(struct net_device *dev)
+{
+	int base_addr = au1000_iflist[next_dev].port;
+	int irq = au1000_iflist[next_dev].irq;
+
+#ifndef CONFIG_MIPS_AU1000_ENET
+	return -ENODEV;
+#endif
+
+	if (au1000_debug > 4)
+		printk(KERN_INFO "%s: au1000_probe base_addr %x\n", 
+				dev->name, base_addr);
+
+	if (next_dev >= NUM_INTERFACES) {
+		return -ENODEV;
+	}
+	if (au1000_probe1(dev, base_addr, irq, next_dev) == 0) {
+		next_dev++;
+		return 0;
+	}
+	next_dev++;
+	return -ENODEV;
+}
+
+
+
+static int __init
+au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
+{
+	static unsigned version_printed = 0;
+	struct au1000_private *aup = NULL;
+	int i, retval = 0;
+	db_dest_t *pDB, *pDBfree;
+	u16 link, speed;
+
+	if ((ioaddr != AU1000_ETH0_BASE) && (ioaddr != AU1000_ETH1_BASE))  {
+		return -ENODEV;
+	}
+
+	if (!request_region(ioaddr, MAC_IOSIZE, "Au1000 ENET")) {
+		 return -ENODEV;
+	}
+
+	if (version_printed++ == 0) printk(version);
+
+	if (!dev) {
+		dev = init_etherdev(0, sizeof(struct au1000_private));
+	}
+	if (!dev) {
+		 printk (KERN_ERR "au1000 eth: init_etherdev failed\n");  
+		 return -ENODEV;
+	}
+
+	printk("%s: Au1000 ethernet found at 0x%lx, irq %d\n",
+	       dev->name, ioaddr, irq);
+
+
+	/* Initialize our private structure */
+	if (dev->priv == NULL) {
+		aup = (struct au1000_private *) kmalloc(sizeof(*aup), GFP_KERNEL);
+		if (aup == NULL) {
+			retval = -ENOMEM;
+			goto free_region;
+		}
+		dev->priv = aup;
+	}
+
+	aup = dev->priv;
+	memset(aup, 0, sizeof(*aup));
+
+
+	/* Allocate the data buffers */
+	aup->vaddr = (u32)dma_alloc(MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), &aup->dma_addr);
+	if (!aup->vaddr) {
+		retval = -ENOMEM;
+		goto free_region;
+	}
+
+	/* aup->mac is the base address of the MAC's registers */
+	aup->mac = (volatile mac_reg_t *)ioremap_nocache((unsigned long)ioaddr, sizeof(*aup->mac));
+	/* Setup some variables for quick register address access */
+	if (ioaddr == AU1000_ETH0_BASE) {
+		aup->enable = (volatile u32 *)
+			ioremap_nocache((unsigned long)MAC0_ENABLE, sizeof(*aup->enable)); 
+		memcpy(dev->dev_addr, au1000_mac_addr[0], sizeof(dev->dev_addr));
+		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
+	}
+	else if (ioaddr == AU1000_ETH1_BASE) {
+		aup->enable = (volatile u32 *)
+			ioremap_nocache((unsigned long)MAC1_ENABLE, sizeof(*aup->enable)); 
+		memcpy(dev->dev_addr, au1000_mac_addr[1], sizeof(dev->dev_addr));
+		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
+	}
+	else { /* should never happen */
+		 printk (KERN_ERR "au1000 eth: bad ioaddr %x\n", (unsigned)ioaddr);  
+		 retval = -ENODEV;
+		 goto free_region;
+	}
+
+	aup->phy_addr = PHY_ADDRESS;
+	/* bring the device out of reset, otherwise probing the mii
+	 * will hang */
+	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 |
+		MAC_EN_CLOCK_ENABLE | MAC_EN_TOSS;
+	sync();
+	mdelay(2);
+	if (mii_probe(dev) != 0) {
+		 goto free_region;
+	}
+	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
+	if (!link) {
+		printk(KERN_INFO "%s: link down resetting...\n", dev->name);
+		aup->phy_ops->phy_reset(dev, aup->phy_addr);
+		aup->phy_ops->phy_init(dev, aup->phy_addr);
+	}
+	else {
+		printk(KERN_INFO "%s: link up (%s)\n", dev->name, phy_link[speed]);
+	}
+
+	pDBfree = NULL;
+	/* setup the data buffer descriptors and attach a buffer to each one */
+	pDB = aup->db;
+	for (i=0; i<(NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
+		pDB->pnext = pDBfree;
+		pDBfree = pDB;
+		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
+		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
+		pDB++;
+	}
+	aup->pDBfree = pDBfree;
+
+	for (i=0; i<NUM_RX_DMA; i++) {
+		pDB = GetFreeDB(aup);
+		if (!pDB) goto free_region;
+		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
+		aup->rx_db_inuse[i] = pDB;
+	}
+	for (i=0; i<NUM_TX_DMA; i++) {
+		pDB = GetFreeDB(aup);
+		if (!pDB) goto free_region;
+		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
+		aup->tx_dma_ring[i]->len = 0;
+		aup->tx_db_inuse[i] = pDB;
+	}
+
+	spin_lock_init(&aup->lock);
+	dev->base_addr = ioaddr;
+	dev->irq = irq;
+	dev->open = au1000_open;
+	dev->hard_start_xmit = au1000_tx;
+	dev->stop = au1000_close;
+	dev->get_stats = au1000_get_stats;
+	dev->set_multicast_list = &set_rx_mode;
+	dev->do_ioctl = &au1000_ioctl;
+	dev->set_config = &au1000_set_config;
+	dev->tx_timeout = au1000_tx_timeout;
+	dev->watchdog_timeo = ETH_TX_TIMEOUT;
+
+
+	/* Fill in the fields of the device structure with ethernet values. */
+	ether_setup(dev);
+
+	/* 
+	 * The boot code uses the ethernet controller, so reset it to start fresh.
+	 * au1000_init() expects that the device is in reset state.
+	 */
+	reset_mac(dev);
+
+	return 0;
+
+free_region:
+	release_region(ioaddr, MAC_IOSIZE);
+	unregister_netdev(dev);
+	if (aup->vaddr)
+		dma_free((void *)aup->vaddr, MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS));
+	if (dev->priv != NULL)
+		kfree(dev->priv);
+	kfree(dev);
+	printk(KERN_ERR "%s: au1000_probe1 failed.  Returns %d\n",
+	       dev->name, retval);
+	return retval;
+}
+
+
+/* 
+ * Initialize the interface.
+ *
+ * When the device powers up, the clocks are disabled and the
+ * mac is in reset state.  When the interface is closed, we
+ * do the same -- reset the device and disable the clocks to
+ * conserve power. Thus, whenever au1000_init() is called,
+ * the device should already be in reset state.
+ */
+static int au1000_init(struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	u32 flags;
+	int i;
+	u32 value, control;
+
+	if (au1000_debug > 4) printk("%s: au1000_init", dev->name);
+
+	spin_lock_irqsave(&aup->lock, flags);
+
+	/* bring the device out of reset */
+	value = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 |
+		MAC_EN_CLOCK_ENABLE | MAC_EN_TOSS;
+	*aup->enable = value;
+	sync();
+	mdelay(200);
+
+	aup->mac->control = 0;
+	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
+	aup->tx_tail = aup->tx_head;
+	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
+
+	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
+	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
+		dev->dev_addr[1]<<8 | dev->dev_addr[0];
+
+	for (i=0; i<NUM_RX_DMA; i++) {
+		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
+	}
+
+	sync();
+	control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
+#ifndef CONFIG_CPU_LITTLE_ENDIAN
+	control |= MAC_BIG_ENDIAN;
+#endif
+	aup->mac->control = control;
+
+	spin_unlock_irqrestore(&aup->lock, flags);
+	return 0;
+}
+
+static void au1000_timer(unsigned long data)
+{
+	struct net_device *dev = (struct net_device *)data;
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	u16 mii_data, link, speed;
+
+	if (!dev) {
+		/* fatal error, don't restart the timer */
+		printk(KERN_ERR "au1000_timer error: NULL dev\n");
+		return;
+	}
+	if (!(dev->flags & IFF_UP)) {
+		goto set_timer;
+	}
+
+	if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
+		if (link) {
+			if (!(dev->flags & IFF_RUNNING)) {
+				netif_carrier_on(dev);
+				dev->flags |= IFF_RUNNING;
+				printk(KERN_DEBUG "%s: link up\n", dev->name);
+			}
+		}
+		else {
+			if (dev->flags & IFF_RUNNING) {
+				netif_carrier_off(dev);
+				dev->flags &= ~IFF_RUNNING;
+				dev->if_port = 0;
+				printk(KERN_DEBUG "%s: link down\n", dev->name);
+			}
+		}
+	}
+
+set_timer:
+	aup->timer.expires = RUN_AT((1*HZ)); 
+	aup->timer.data = (unsigned long)dev;
+	aup->timer.function = &au1000_timer; /* timer handler */
+	add_timer(&aup->timer);
+
+}
+
+static int au1000_open(struct net_device *dev)
+{
+	int retval;
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	MOD_INC_USE_COUNT;
+
+	if (au1000_debug > 4)
+		printk("%s: open: dev=%p\n", dev->name, dev);
+
+	if ((retval = au1000_init(dev))) {
+		printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
+		free_irq(dev->irq, dev);
+		MOD_DEC_USE_COUNT;
+		return retval;
+	}
+	netif_start_queue(dev);
+
+	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, dev->name, dev))) {
+		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq);
+		MOD_DEC_USE_COUNT;
+		return retval;
+	}
+
+	aup->timer.expires = RUN_AT((3*HZ)); 
+	aup->timer.data = (unsigned long)dev;
+	aup->timer.function = &au1000_timer; /* timer handler */
+	add_timer(&aup->timer);
+
+	if (au1000_debug > 4)
+		printk("%s: open: Initialization done.\n", dev->name);
+
+	return 0;
+}
+
+static int au1000_close(struct net_device *dev)
+{
+	u32 flags;
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	if (au1000_debug > 4)
+		printk("%s: close: dev=%p\n", dev->name, dev);
+
+	spin_lock_irqsave(&aup->lock, flags);
+	
+	/* stop the device */
+	if (netif_device_present(dev)) {
+		netif_stop_queue(dev);
+	}
+
+	/* disable the interrupt */
+	free_irq(dev->irq, dev);
+	spin_unlock_irqrestore(&aup->lock, flags);
+
+	reset_mac(dev);
+	MOD_DEC_USE_COUNT;
+	return 0;
+}
+
+
+static inline void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	struct net_device_stats *ps = &aup->stats;
+
+	ps->tx_packets++;
+	ps->tx_bytes += pkt_len;
+
+	if (status & TX_FRAME_ABORTED) {
+		ps->tx_errors++;
+		ps->tx_aborted_errors++;
+		if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
+			ps->tx_carrier_errors++;
+	}
+}
+
+
+/*
+ * Called from the interrupt service routine to acknowledge
+ * the TX DONE bits.  This is a must if the irq is setup as
+ * edge triggered.
+ */
+static void au1000_tx_ack(struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	volatile tx_dma_t *ptxd;
+
+	ptxd = aup->tx_dma_ring[aup->tx_tail];
+
+	while (ptxd->buff_stat & TX_T_DONE) {
+		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
+		ptxd->buff_stat &= ~TX_T_DONE;
+		ptxd->len = 0;
+		sync();
+
+		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
+		ptxd = aup->tx_dma_ring[aup->tx_tail];
+
+		if (aup->tx_full) {
+			aup->tx_full = 0;
+			netif_wake_queue(dev);
+		}
+	}
+}
+
+
+/*
+ * Au1000 transmit routine.
+ */
+static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	//unsigned long flags;
+	volatile tx_dma_t *ptxd;
+	u32 buff_stat;
+	db_dest_t *pDB;
+	int i;
+
+	if (au1000_debug > 4)
+		printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
+		       dev->name, (unsigned)aup, skb->len, skb->data, aup->tx_head);
+
+	/* Prevent interrupts from changing the Tx ring */
+	//spin_lock_irqsave(&aup->lock, flags);
+	
+	ptxd = aup->tx_dma_ring[aup->tx_head];
+	buff_stat = ptxd->buff_stat;
+	if (buff_stat & TX_DMA_ENABLE) {
+		/* We've wrapped around and the transmitter is still busy */
+		netif_stop_queue(dev);
+		aup->tx_full = 1;
+		//spin_unlock_irqrestore(&aup->lock, flags);
+		return 1;
+	}
+	else if (buff_stat & TX_T_DONE) {
+		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
+		ptxd->len = 0;
+	}
+
+	if (aup->tx_full) {
+		aup->tx_full = 0;
+		netif_wake_queue(dev);
+	}
+
+	pDB = aup->tx_db_inuse[aup->tx_head];
+	memcpy((void *)pDB->vaddr, skb->data, skb->len);
+	if (skb->len < MAC_MIN_PKT_SIZE) {
+		for (i=skb->len; i<MAC_MIN_PKT_SIZE; i++) { 
+			((char *)pDB->vaddr)[i] = 0;
+		}
+		ptxd->len = MAC_MIN_PKT_SIZE;
+	}
+	else
+		ptxd->len = skb->len;
+
+	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
+	sync();
+	dev_kfree_skb(skb);
+	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
+	dev->trans_start = jiffies;
+	//spin_unlock_irqrestore(&aup->lock, flags);
+	return 0;
+}
+
+
+static inline void update_rx_stats(struct net_device *dev, u32 status)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	struct net_device_stats *ps = &aup->stats;
+
+	ps->rx_packets++;
+	if (status & RX_MCAST_FRAME)
+		ps->multicast++;
+
+	if (status & RX_ERROR) {
+		ps->rx_errors++;
+		if (status & RX_MISSED_FRAME)
+			ps->rx_missed_errors++;
+		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
+			ps->rx_length_errors++;
+		if (status & RX_CRC_ERROR)
+			ps->rx_crc_errors++;
+		if (status & RX_COLL)
+			ps->collisions++;
+	}
+	else 
+		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
+
+}
+
+/*
+ * Au1000 receive routine.
+ */
+static int au1000_rx(struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	struct sk_buff *skb;
+	volatile rx_dma_t *prxd;
+	u32 buff_stat, status;
+	db_dest_t *pDB;
+
+	if (au1000_debug > 4)
+		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
+
+	prxd = aup->rx_dma_ring[aup->rx_head];
+	buff_stat = prxd->buff_stat;
+	while (buff_stat & RX_T_DONE)  {
+		status = prxd->status;
+		pDB = aup->rx_db_inuse[aup->rx_head];
+		update_rx_stats(dev, status);
+		if (!(status & RX_ERROR))  {
+
+			/* good frame */
+			skb = dev_alloc_skb((status & RX_FRAME_LEN_MASK) + 2);
+			if (skb == NULL) {
+				printk(KERN_ERR
+				       "%s: Memory squeeze, dropping packet.\n",
+				       dev->name);
+				aup->stats.rx_dropped++;
+				continue;
+			}
+			skb->dev = dev;
+			skb_reserve(skb, 2);	/* 16 byte IP header align */
+			eth_copy_and_sum(skb, (unsigned char *)pDB->vaddr, 
+					status & RX_FRAME_LEN_MASK, 0);
+			skb_put(skb, status & RX_FRAME_LEN_MASK); /* Make room */
+			skb->protocol = eth_type_trans(skb, dev);
+			netif_rx(skb);	/* pass the packet to upper layers */
+		}
+		else {
+			if (au1000_debug > 4) {
+				if (status & RX_MISSED_FRAME) 
+					printk("rx miss\n");
+				if (status & RX_WDOG_TIMER) 
+					printk("rx wdog\n");
+				if (status & RX_RUNT) 
+					printk("rx runt\n");
+				if (status & RX_OVERLEN) 
+					printk("rx overlen\n");
+				if (status & RX_COLL)
+					printk("rx coll\n");
+				if (status & RX_MII_ERROR)
+					printk("rx mii error\n");
+				if (status & RX_CRC_ERROR)
+					printk("rx crc error\n");
+				if (status & RX_LEN_ERROR)
+					printk("rx len error\n");
+				if (status & RX_U_CNTRL_FRAME)
+					printk("rx u control frame\n");
+				if (status & RX_MISSED_FRAME)
+					printk("rx miss\n");
+			}
+		}
+		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
+		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
+		sync();
+
+		/* next descriptor */
+		prxd = aup->rx_dma_ring[aup->rx_head];
+		buff_stat = prxd->buff_stat;
+		dev->last_rx = jiffies;
+	}
+	return 0;
+}
+
+
+/*
+ * Au1000 interrupt service routine.
+ */
+void au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+	struct net_device *dev = (struct net_device *) dev_id;
+
+	if (dev == NULL) {
+		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
+		return;
+	}
+	au1000_rx(dev);
+	au1000_tx_ack(dev);
+}
+
+
+/*
+ * The Tx ring has been full longer than the watchdog timeout
+ * value. The transmitter must be hung?
+ */
+static void au1000_tx_timeout(struct net_device *dev)
+{
+	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
+	reset_mac(dev);
+	au1000_init(dev);
+}
+
+
+static unsigned const ethernet_polynomial = 0x04c11db7U;
+static inline u32 ether_crc(int length, unsigned char *data)
+{
+    int crc = -1;
+
+    while(--length >= 0) {
+		unsigned char current_octet = *data++;
+		int bit;
+		for (bit = 0; bit < 8; bit++, current_octet >>= 1)
+			crc = (crc << 1) ^
+				((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0);
+    }
+    return crc;
+}
+
+static void set_rx_mode(struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	/* fixme */
+	if (au1000_debug > 4) 
+		printk("%s: set_multicast: flags=%x\n", dev->name, dev->flags);
+
+	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
+		aup->mac->control |= MAC_PROMISCUOUS;
+		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
+	} else if ((dev->flags & IFF_ALLMULTI)  ||
+			   dev->mc_count > MULTICAST_FILTER_LIMIT) {
+		aup->mac->control |= MAC_PASS_ALL_MULTI;
+		aup->mac->control &= ~MAC_PROMISCUOUS;
+		printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
+	} else {
+		int i;
+		struct dev_mc_list *mclist;
+		u32 mc_filter[2];	/* Multicast hash filter */
+
+		mc_filter[1] = mc_filter[0] = 0;
+		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
+			 i++, mclist = mclist->next) {
+			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, mc_filter);
+		}
+		aup->mac->multi_hash_high = mc_filter[1];
+		aup->mac->multi_hash_low = mc_filter[0];
+		aup->mac->control |= MAC_HASH_MODE;
+	}
+}
+
+
+static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
+{
+	//struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	u16 *data = (u16 *)&rq->ifr_data;
+
+	/* fixme */
+	switch(cmd) { 
+		case SIOCDEVPRIVATE:		/* Get the address of the PHY in use. */
+		data[0] = PHY_ADDRESS;
+		case SIOCDEVPRIVATE+1:		/* Read the specified MII register. */
+		//data[3] = mdio_read(ioaddr, data[0], data[1]); 
+		return 0;
+		case SIOCDEVPRIVATE+2:		/* Write the specified MII register */
+		//mdio_write(ioaddr, data[0], data[1], data[2]);
+		return 0;
+		default:
+		return -EOPNOTSUPP;
+	}
+}
+
+
+static int au1000_set_config(struct net_device *dev, struct ifmap *map)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+	u16 control;
+
+	if (au1000_debug > 4)  {
+		printk("%s: set_config called: dev->if_port %d map->port %x\n", 
+				dev->name, dev->if_port, map->port);
+	}
+
+	switch(map->port){
+		case IF_PORT_UNKNOWN: /* use auto here */   
+			printk("auto\\n");
+			dev->if_port = map->port;
+			/* Link Down: the timer will bring it up */
+			netif_carrier_off(dev);
+	
+			/* read current control */
+			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+			control &= ~(MII_CNTL_FDX | MII_CNTL_F100);
+
+			/* enable auto negotiation and reset the negotiation */
+			mdio_write(dev, aup->phy_addr,
+				   MII_CONTROL, control | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
+
+			break;
+    
+		case IF_PORT_10BASET: /* 10BaseT */         
+			printk("10baseT\n");
+			dev->if_port = map->port;
+	
+			/* Link Down: the timer will bring it up */
+			netif_carrier_off(dev);
+
+			/* set Speed to 10Mbps, Half Duplex */
+			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+			printk("read control %x\n", control);
+			control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_FDX);
+	
+			/* disable auto negotiation and force 10M/HD mode*/
+			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
+			break;
+    
+		case IF_PORT_100BASET: /* 100BaseT */
+		case IF_PORT_100BASETX: /* 100BaseTx */ 
+			printk("100 base T/TX\n");
+			dev->if_port = map->port;
+	
+			/* Link Down: the timer will bring it up */
+			netif_carrier_off(dev);
+	
+			/* set Speed to 100Mbps, Half Duplex */
+			/* disable auto negotiation and enable 100MBit Mode */
+			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+			printk("read control %x\n", control);
+			control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
+			control |= MII_CNTL_F100;
+			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
+			break;
+    
+		case IF_PORT_100BASEFX: /* 100BaseFx */
+			printk("100 Base FX\n");
+			dev->if_port = map->port;
+	
+			/* Link Down: the timer will bring it up */
+			netif_carrier_off(dev);
+	
+			/* set Speed to 100Mbps, Full Duplex */
+			/* disable auto negotiation and enable 100MBit Mode */
+			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+			control &= ~MII_CNTL_AUTO;
+			control |=  MII_CNTL_F100 | MII_CNTL_FDX;
+			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
+			break;
+		case IF_PORT_10BASE2: /* 10Base2 */
+		case IF_PORT_AUI: /* AUI */
+		/* These Modes are not supported (are they?)*/
+			printk(KERN_INFO "Not supported");
+			return -EOPNOTSUPP;
+			break;
+    
+		default:
+			printk("Invalid");
+			return -EINVAL;
+	}
+	return 0;
+}
+
+static struct net_device_stats *au1000_get_stats(struct net_device *dev)
+{
+	struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+	if (au1000_debug > 4)
+		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
+
+	if (netif_device_present(dev)) {
+		return &aup->stats;
+	}
+	return 0;
+}

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)