patch-2.4.26 linux-2.4.26/arch/ppc/cpm2_io/fcc_enet.c

Next file: linux-2.4.26/arch/ppc/cpm2_io/uart.c
Previous file: linux-2.4.26/arch/ppc/cpm2_io/enet.c
Back to the patch index
Back to the overall index

diff -urN linux-2.4.25/arch/ppc/cpm2_io/fcc_enet.c linux-2.4.26/arch/ppc/cpm2_io/fcc_enet.c
@@ -0,0 +1,2007 @@
+/*
+ * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
+ * Copyright (c) 2000 MontaVista Software, Inc.   Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is a combination of the 8xx fec and
+ * 8260 SCC Ethernet drivers.  This version has some additional
+ * configuration options, which should probably be moved out of
+ * here.  This driver currently works for the EST SBC8260,
+ * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
+ *
+ * Right now, I am very watseful with the buffers.  I allocate memory
+ * pages and then divide them into 2K frame buffers.  This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.  Since this is a cache coherent processor and CPM,
+ * I could also preallocate SKB's and use them directly on the interface.
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+
+#include <asm/immap_cpm2.h>
+#include <asm/pgtable.h>
+#include <asm/mpc8260.h>
+#include <asm/irq.h>
+#include <asm/bitops.h>
+#include <asm/uaccess.h>
+#include <asm/cpm2.h>
+
+/* The transmitter timeout
+ */
+#define TX_TIMEOUT	(2*HZ)
+
+#ifdef	CONFIG_USE_MDIO
+/* Forward declarations of some structures to support different PHYs */
+
+typedef struct {
+	uint mii_data;
+	void (*funct)(uint mii_reg, struct net_device *dev);
+} phy_cmd_t;
+
+typedef struct {
+	uint id;
+	char *name;
+
+	const phy_cmd_t *config;
+	const phy_cmd_t *startup;
+	const phy_cmd_t *ack_int;
+	const phy_cmd_t *shutdown;
+} phy_info_t;
+
+/* Register definitions for the PHY. */
+
+#define MII_REG_CR          0  /* Control Register                         */
+#define MII_REG_SR          1  /* Status Register                          */
+#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
+#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
+#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
+#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
+#define MII_REG_ANER        6  /* A-N Expansion Register                   */
+#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
+#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
+
+/* values for phy_status */
+
+#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
+#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
+#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
+#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
+#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
+#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
+#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
+
+#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
+#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
+#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
+#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
+#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
+#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
+#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
+#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
+#endif	/* CONFIG_USE_MDIO */
+
+/* The number of Tx and Rx buffers.  These are allocated from the page
+ * pool.  The code may assume these are power of two, so it is best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter.  We just use
+ * the skbuffer directly.
+ */
+#define FCC_ENET_RX_PAGES	16
+#define FCC_ENET_RX_FRSIZE	2048
+#define FCC_ENET_RX_FRPPG	(PAGE_SIZE / FCC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE		(FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
+#define TX_RING_SIZE		16	/* Must be power of two */
+#define TX_RING_MOD_MASK	15	/*   for this to work */
+
+/* The FCC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE		1518
+#define PKT_MINBUF_SIZE		64
+
+/* Maximum input DMA size.  Must be a should(?) be a multiple of 4.
+*/
+#define PKT_MAXDMA_SIZE		1520
+
+/* Maximum input buffer size.  Must be a multiple of 32.
+*/
+#define PKT_MAXBLR_SIZE		1536
+
+static int fcc_enet_open(struct net_device *dev);
+static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
+static int fcc_enet_rx(struct net_device *dev);
+static	void fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static int fcc_enet_close(struct net_device *dev);
+static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
+static void set_multicast_list(struct net_device *dev);
+static void fcc_restart(struct net_device *dev, int duplex);
+static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
+
+/* These will be configurable for the FCC choice.
+ * Multiple ports can be configured.  There is little choice among the
+ * I/O pins to the PHY, except the clocks.  We will need some board
+ * dependent clock selection.
+ * Why in the hell did I put these inside #ifdef's?  I dunno, maybe to
+ * help show what pins are used for each device.
+ */
+
+/* I/O Pin assignment for FCC1.  I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PA1_COL		((uint)0x00000001)
+#define PA1_CRS		((uint)0x00000002)
+#define PA1_TXER	((uint)0x00000004)
+#define PA1_TXEN	((uint)0x00000008)
+#define PA1_RXDV	((uint)0x00000010)
+#define PA1_RXER	((uint)0x00000020)
+#define PA1_TXDAT	((uint)0x00003c00)
+#define PA1_RXDAT	((uint)0x0003c000)
+#define PA1_PSORA0	(PA1_RXDAT | PA1_TXDAT)
+#define PA1_PSORA1	(PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
+				PA1_RXDV | PA1_RXER)
+#define PA1_DIRA0	(PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
+#define PA1_DIRA1	(PA1_TXDAT | PA1_TXEN | PA1_TXER)
+
+/* CLK12 is receive, CLK11 is transmit.  These are board specific.
+*/
+#ifdef CONFIG_ADS8272
+#define PC_F1RXCLK	((uint)0x00000400)
+#define PC_F1TXCLK	((uint)0x00000200)
+#define CMX1_CLK_ROUTE	((uint)0x36000000)
+#define CMX1_CLK_MASK	((uint)0xff000000)
+#else
+#define PC_F1RXCLK	((uint)0x00000800)
+#define PC_F1TXCLK	((uint)0x00000400)
+#define CMX1_CLK_ROUTE	((uint)0x3e000000)
+#define CMX1_CLK_MASK	((uint)0xff000000)
+#endif
+
+/* I/O Pin assignment for FCC2.  I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PB2_TXER	((uint)0x00000001)
+#define PB2_RXDV	((uint)0x00000002)
+#define PB2_TXEN	((uint)0x00000004)
+#define PB2_RXER	((uint)0x00000008)
+#define PB2_COL		((uint)0x00000010)
+#define PB2_CRS		((uint)0x00000020)
+#define PB2_TXDAT	((uint)0x000003c0)
+#define PB2_RXDAT	((uint)0x00003c00)
+#define PB2_PSORB0	(PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
+				PB2_RXER | PB2_RXDV | PB2_TXER)
+#define PB2_PSORB1	(PB2_TXEN)
+#define PB2_DIRB0	(PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
+#define PB2_DIRB1	(PB2_TXDAT | PB2_TXEN | PB2_TXER)
+
+/* CLK13 is receive, CLK14 is transmit.  These are board dependent.
+*/
+#ifdef CONFIG_ADS8272
+#define PC_F2RXCLK	((uint)0x00004000)
+#define PC_F2TXCLK	((uint)0x00008000)
+#define CMX2_CLK_ROUTE	((uint)0x00370000)
+#define CMX2_CLK_MASK	((uint)0x00ff0000)
+#else
+#define PC_F2RXCLK	((uint)0x00001000)
+#define PC_F2TXCLK	((uint)0x00002000)
+#define CMX2_CLK_ROUTE	((uint)0x00250000)
+#define CMX2_CLK_MASK	((uint)0x00ff0000)
+#endif
+
+/* I/O Pin assignment for FCC3.  I don't yet know the best way to do this,
+ * but there is little variation among the choices.
+ */
+#define PB3_RXDV	((uint)0x00004000)
+#define PB3_RXER	((uint)0x00008000)
+#define PB3_TXER	((uint)0x00010000)
+#define PB3_TXEN	((uint)0x00020000)
+#define PB3_COL		((uint)0x00040000)
+#define PB3_CRS		((uint)0x00080000)
+#define PB3_TXDAT	((uint)0x0f000000)
+#define PB3_RXDAT	((uint)0x00f00000)
+#define PB3_PSORB0	(PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
+				PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
+#define PB3_PSORB1	(0)
+#define PB3_DIRB0	(PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
+#define PB3_DIRB1	(PB3_TXDAT | PB3_TXEN | PB3_TXER)
+
+/* CLK15 is receive, CLK16 is transmit.  These are board dependent.
+*/
+#define PC_F3RXCLK	((uint)0x00004000)
+#define PC_F3TXCLK	((uint)0x00008000)
+#define CMX3_CLK_ROUTE	((uint)0x00003700)
+#define CMX3_CLK_MASK	((uint)0x0000ff00)
+
+/* MII status/control serial interface.
+*/
+#ifdef	CONFIG_TQM8260
+/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
+#define PC_MDIO		((uint)0x00000002)
+#define PC_MDCK		((uint)0x00000001)
+#elif defined(CONFIG_ADS8272)
+#define PC_MDIO		((uint)0x00002000)
+#define PC_MDCK		((uint)0x00001000)
+#else
+#define PC_MDIO		((uint)0x00000004)
+#define PC_MDCK		((uint)0x00000020)
+#endif
+
+/* A table of information for supporting FCCs.  This does two things.
+ * First, we know how many FCCs we have and they are always externally
+ * numbered from zero.  Second, it holds control register and I/O
+ * information that could be different among board designs.
+ */
+typedef struct fcc_info {
+	uint	fc_fccnum;
+	uint	fc_cpmblock;
+	uint	fc_cpmpage;
+	uint	fc_proff;
+	uint	fc_interrupt;
+	uint	fc_trxclocks;
+	uint	fc_clockroute;
+	uint	fc_clockmask;
+	uint	fc_mdio;
+	uint	fc_mdck;
+} fcc_info_t;
+
+static fcc_info_t fcc_ports[] = {
+#ifdef CONFIG_FCC1_ENET
+	{ 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
+		(PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
+# if defined(CONFIG_TQM8260) || defined (CONFIG_ADS8272)
+		PC_MDIO, PC_MDCK },
+# else
+		0x00000004, 0x00000100 },
+# endif
+#endif
+#ifdef CONFIG_FCC2_ENET
+	{ 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
+		(PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
+# if defined(CONFIG_TQM8260) || defined (CONFIG_ADS8272)
+		PC_MDIO, PC_MDCK },
+# elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260)
+		0x00400000, 0x00200000 },
+# else
+		0x00000002, 0x00000080 },
+# endif
+#endif
+#ifdef CONFIG_FCC3_ENET
+	{ 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
+		(PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
+# if defined(CONFIG_TQM8260) || defined (CONFIG_ADS8272)
+		PC_MDIO, PC_MDCK },
+# else
+		0x00000001, 0x00000040 },
+# endif
+#endif
+};
+
+/* The FCC buffer descriptors track the ring buffers.  The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors.  The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller.  The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions.  The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fcc_enet_private {
+	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
+	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
+	ushort	skb_cur;
+	ushort	skb_dirty;
+
+	/* CPM dual port RAM relative addresses.
+	*/
+	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
+	cbd_t	*tx_bd_base;
+	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
+	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
+	volatile fcc_t	*fccp;
+	volatile fcc_enet_t	*ep;
+	struct	net_device_stats stats;
+	uint	tx_full;
+	spinlock_t lock;
+
+#ifdef	CONFIG_USE_MDIO
+	uint	phy_id;
+	uint	phy_id_done;
+	uint	phy_status;
+	phy_info_t	*phy;
+	struct tq_struct phy_task;
+
+	uint	sequence_done;
+
+	uint	phy_addr;
+#endif	/* CONFIG_USE_MDIO */
+
+	int	link;
+	int	old_link;
+	int	full_duplex;
+
+	fcc_info_t	*fip;
+};
+
+static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
+	volatile cpm2_map_t *immap);
+static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
+static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
+	volatile cpm2_map_t *immap);
+static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
+	volatile cpm2_map_t *immap);
+
+#ifdef	CONFIG_USE_MDIO
+static int	mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
+static uint	mii_send_receive(fcc_info_t *fip, uint cmd);
+
+static void	fcc_stop(struct net_device *dev);
+
+/* Make MII read/write commands for the FCC.
+*/
+#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
+#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
+						(VAL & 0xffff))
+#define mk_mii_end	0
+#endif	/* CONFIG_USE_MDIO */
+
+
+static int
+fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+	volatile cbd_t	*bdp;
+
+	if (!cep->link) {
+		/* Link is down or autonegotiation is in progress. */
+		return 1;
+	}
+
+	/* Fill in a Tx ring entry */
+	bdp = cep->cur_tx;
+
+#ifndef final_version
+	if (bdp->cbd_sc & BD_ENET_TX_READY) {
+		/* Ooops.  All transmit buffers are full.  Bail out.
+		 * This should not happen, since cep->tx_full should be set.
+		 */
+		printk("%s: tx queue full!.\n", dev->name);
+		return 1;
+	}
+#endif
+
+	/* Clear all of the status flags. */
+	bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+	/* If the frame is short, tell CPM to pad it. */
+	if (skb->len <= ETH_ZLEN)
+		bdp->cbd_sc |= BD_ENET_TX_PAD;
+	else
+		bdp->cbd_sc &= ~BD_ENET_TX_PAD;
+
+	/* Set buffer length and buffer pointer. */
+	bdp->cbd_datlen = skb->len;
+	bdp->cbd_bufaddr = __pa(skb->data);
+
+	/* Save skb pointer. */
+	cep->tx_skbuff[cep->skb_cur] = skb;
+
+	cep->stats.tx_bytes += skb->len;
+	cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
+
+	spin_lock_irq(&cep->lock);
+
+	/* Send it on its way.  Tell CPM its ready, interrupt when done,
+	 * its the last BD of the frame, and to put the CRC on the end.
+	 */
+	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+#if 0
+	/* Errata says don't do this. */
+	cep->fccp->fcc_ftodr = 0x8000;
+#endif
+	dev->trans_start = jiffies;
+
+	/* If this was the last BD in the ring, start at the beginning again. */
+	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+		bdp = cep->tx_bd_base;
+	else
+		bdp++;
+
+	if (bdp->cbd_sc & BD_ENET_TX_READY) {
+		netif_stop_queue(dev);
+		cep->tx_full = 1;
+	}
+
+	cep->cur_tx = (cbd_t *)bdp;
+
+	spin_unlock_irq(&cep->lock);
+
+	return 0;
+}
+
+
+static void
+fcc_enet_timeout(struct net_device *dev)
+{
+	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+
+	printk("%s: transmit timed out.\n", dev->name);
+	cep->stats.tx_errors++;
+#ifndef final_version
+	{
+		int	i;
+		cbd_t	*bdp;
+		printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
+		       cep->cur_tx, cep->tx_full ? " (full)" : "",
+		       cep->cur_rx);
+		bdp = cep->tx_bd_base;
+		printk(" Tx @base %p :\n", bdp);
+		for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
+			printk("%04x %04x %08x\n",
+			       bdp->cbd_sc,
+			       bdp->cbd_datlen,
+			       bdp->cbd_bufaddr);
+		bdp = cep->rx_bd_base;
+		printk(" Rx @base %p :\n", bdp);
+		for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
+			printk("%04x %04x %08x\n",
+			       bdp->cbd_sc,
+			       bdp->cbd_datlen,
+			       bdp->cbd_bufaddr);
+	}
+#endif
+	if (!cep->tx_full)
+		netif_wake_queue(dev);
+}
+
+/* The interrupt handler. */
+static void
+fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+	struct	net_device *dev = dev_id;
+	volatile struct	fcc_enet_private *cep;
+	volatile cbd_t	*bdp;
+	ushort	int_events;
+	int	must_restart;
+
+	cep = (struct fcc_enet_private *)dev->priv;
+
+	/* Get the interrupt events that caused us to be here.
+	*/
+	int_events = cep->fccp->fcc_fcce;
+	cep->fccp->fcc_fcce = int_events;
+	must_restart = 0;
+
+	/* Handle receive event in its own function.
+	*/
+	if (int_events & FCC_ENET_RXF)
+		fcc_enet_rx(dev_id);
+
+	/* Check for a transmit error.  The manual is a little unclear
+	 * about this, so the debug code until I get it figured out.  It
+	 * appears that if TXE is set, then TXB is not set.  However,
+	 * if carrier sense is lost during frame transmission, the TXE
+	 * bit is set, "and continues the buffer transmission normally."
+	 * I don't know if "normally" implies TXB is set when the buffer
+	 * descriptor is closed.....trial and error :-).
+	 */
+
+	/* Transmit OK, or non-fatal error.  Update the buffer descriptors.
+	*/
+	if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
+	    spin_lock(&cep->lock);
+	    bdp = cep->dirty_tx;
+	    while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
+		if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
+		    break;
+
+		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */
+			cep->stats.tx_heartbeat_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */
+			cep->stats.tx_window_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */
+			cep->stats.tx_aborted_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */
+			cep->stats.tx_fifo_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */
+			cep->stats.tx_carrier_errors++;
+
+
+		/* No heartbeat or Lost carrier are not really bad errors.
+		 * The others require a restart transmit command.
+		 */
+		if (bdp->cbd_sc &
+		    (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
+			must_restart = 1;
+			cep->stats.tx_errors++;
+		}
+
+		cep->stats.tx_packets++;
+
+		/* Deferred means some collisions occurred during transmit,
+		 * but we eventually sent the packet OK.
+		 */
+		if (bdp->cbd_sc & BD_ENET_TX_DEF)
+			cep->stats.collisions++;
+
+		/* Free the sk buffer associated with this last transmit. */
+		dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
+		cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+		/* Update pointer to next buffer descriptor to be transmitted. */
+		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+			bdp = cep->tx_bd_base;
+		else
+			bdp++;
+
+		/* I don't know if we can be held off from processing these
+		 * interrupts for more than one frame time.  I really hope
+		 * not.  In such a case, we would now want to check the
+		 * currently available BD (cur_tx) and determine if any
+		 * buffers between the dirty_tx and cur_tx have also been
+		 * sent.  We would want to process anything in between that
+		 * does not have BD_ENET_TX_READY set.
+		 */
+
+		/* Since we have freed up a buffer, the ring is no longer
+		 * full.
+		 */
+		if (cep->tx_full) {
+			cep->tx_full = 0;
+			if (netif_queue_stopped(dev)) {
+				netif_wake_queue(dev);
+			}
+		}
+
+		cep->dirty_tx = (cbd_t *)bdp;
+	    }
+
+	    if (must_restart) {
+		volatile cpm_cpm2_t *cp;
+
+		/* Some transmit errors cause the transmitter to shut
+		 * down.  We now issue a restart transmit.  Since the
+		 * errors close the BD and update the pointers, the restart
+		 * _should_ pick up without having to reset any of our
+		 * pointers either.  Also, To workaround 8260 device erratum 
+		 * CPM37, we must disable and then re-enable the transmitter
+		 * following a Late Collision, Underrun, or Retry Limit error.
+		 */
+		cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
+		udelay(10); /* wait a few microseconds just on principle */
+		cep->fccp->fcc_gfmr |=  FCC_GFMR_ENT;
+
+		cp = cpmp;
+		cp->cp_cpcr =
+		    mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
+		    		0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
+		while (cp->cp_cpcr & CPM_CR_FLG);
+	    }
+	    spin_unlock(&cep->lock);
+	}
+
+	/* Check for receive busy, i.e. packets coming but no place to
+	 * put them.
+	 */
+	if (int_events & FCC_ENET_BSY) {
+		cep->stats.rx_dropped++;
+	}
+	return;
+}
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static int
+fcc_enet_rx(struct net_device *dev)
+{
+	struct	fcc_enet_private *cep;
+	volatile cbd_t	*bdp;
+	struct	sk_buff *skb;
+	ushort	pkt_len;
+
+	cep = (struct fcc_enet_private *)dev->priv;
+
+	/* First, grab all of the stats for the incoming packet.
+	 * These get messed up if we get called due to a busy condition.
+	 */
+	bdp = cep->cur_rx;
+
+for (;;) {
+	if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
+		break;
+
+#ifndef final_version
+	/* Since we have allocated space to hold a complete frame, both
+	 * the first and last indicators should be set.
+	 */
+	if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
+		(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
+			printk("CPM ENET: rcv is not first+last\n");
+#endif
+
+	/* Frame too long or too short. */
+	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
+		cep->stats.rx_length_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
+		cep->stats.rx_frame_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
+		cep->stats.rx_crc_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
+		cep->stats.rx_crc_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_CL)	/* Late Collision */
+		cep->stats.rx_frame_errors++;
+
+	if (!(bdp->cbd_sc &
+	      (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
+	       | BD_ENET_RX_OV | BD_ENET_RX_CL)))
+	{
+		/* Process the incoming frame. */
+		cep->stats.rx_packets++;
+
+		/* Remove the FCS from the packet length. */
+		pkt_len = bdp->cbd_datlen - 4;
+		cep->stats.rx_bytes += pkt_len;
+
+		/* This does 16 byte alignment, much more than we need. */
+		skb = dev_alloc_skb(pkt_len);
+
+		if (skb == NULL) {
+			printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+			cep->stats.rx_dropped++;
+		}
+		else {
+			skb->dev = dev;
+			skb_put(skb,pkt_len);	/* Make room */
+			eth_copy_and_sum(skb,
+				(unsigned char *)__va(bdp->cbd_bufaddr),
+				pkt_len, 0);
+			skb->protocol=eth_type_trans(skb,dev);
+			netif_rx(skb);
+		}
+	}
+
+	/* Clear the status flags for this buffer. */
+	bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+	/* Mark the buffer empty. */
+	bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+	/* Update BD pointer to next entry. */
+	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+		bdp = cep->rx_bd_base;
+	else
+		bdp++;
+
+   }
+	cep->cur_rx = (cbd_t *)bdp;
+
+	return 0;
+}
+
+static int
+fcc_enet_close(struct net_device *dev)
+{
+	/* Don't know what to do yet. */
+	netif_stop_queue(dev);
+
+	return 0;
+}
+
+static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
+{
+	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
+
+	return &cep->stats;
+}
+
+#ifdef	CONFIG_USE_MDIO
+
+/* NOTE: Most of the following comes from the FEC driver for 860. The
+ * overall structure of MII code has been retained (as it's proved stable
+ * and well-tested), but actual transfer requests are processed "at once"
+ * instead of being queued (there's no interrupt-driven MII transfer
+ * mechanism, one has to toggle the data/clock bits manually).
+ */
+static int
+mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
+{
+	struct fcc_enet_private *fep;
+	int		retval, tmp;
+
+	/* Add PHY address to register command. */
+	fep = dev->priv;
+	regval |= fep->phy_addr << 23;
+
+	retval = 0;
+
+	tmp = mii_send_receive(fep->fip, regval);
+	if (func)
+		func(tmp, dev);
+
+	return retval;
+}
+
+static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
+{
+	int k;
+
+	if(!c)
+		return;
+
+	for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
+		mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
+}
+
+static void mii_parse_sr(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
+
+	if (mii_reg & 0x0004)
+		s |= PHY_STAT_LINK;
+	if (mii_reg & 0x0010)
+		s |= PHY_STAT_FAULT;
+	if (mii_reg & 0x0020)
+		s |= PHY_STAT_ANC;
+
+	fep->phy_status = s;
+	fep->link = (s & PHY_STAT_LINK) ? 1 : 0;
+}
+
+static void mii_parse_cr(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
+
+	if (mii_reg & 0x1000)
+		s |= PHY_CONF_ANE;
+	if (mii_reg & 0x4000)
+		s |= PHY_CONF_LOOP;
+
+	fep->phy_status = s;
+}
+
+static void mii_parse_anar(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_CONF_SPMASK);
+
+	if (mii_reg & 0x0020)
+		s |= PHY_CONF_10HDX;
+	if (mii_reg & 0x0040)
+		s |= PHY_CONF_10FDX;
+	if (mii_reg & 0x0080)
+		s |= PHY_CONF_100HDX;
+	if (mii_reg & 0x00100)
+		s |= PHY_CONF_100FDX;
+
+	fep->phy_status = s;
+}
+/* ------------------------------------------------------------------------- */
+/* The Level one LXT970 is used by many boards				     */
+
+#ifdef CONFIG_FCC_LXT970
+
+#define MII_LXT970_MIRROR    16  /* Mirror register           */
+#define MII_LXT970_IER       17  /* Interrupt Enable Register */
+#define MII_LXT970_ISR       18  /* Interrupt Status Register */
+#define MII_LXT970_CONFIG    19  /* Configuration Register    */
+#define MII_LXT970_CSR       20  /* Chip Status Register      */
+
+static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_STAT_SPMASK);
+
+	if (mii_reg & 0x0800) {
+		if (mii_reg & 0x1000)
+			s |= PHY_STAT_100FDX;
+		else
+			s |= PHY_STAT_100HDX;
+	} else {
+		if (mii_reg & 0x1000)
+			s |= PHY_STAT_10FDX;
+		else
+			s |= PHY_STAT_10HDX;
+	}
+
+	fep->phy_status = s;
+}
+
+static phy_info_t phy_info_lxt970 = {
+	0x07810000,
+	"LXT970",
+
+	(const phy_cmd_t []) {  /* config */
+#if 0
+//		{ mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
+
+		/* Set default operation of 100-TX....for some reason
+		 * some of these bits are set on power up, which is wrong.
+		 */
+		{ mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
+#endif
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* read SR and ISR to acknowledge */
+
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_LXT970_ISR), NULL },
+
+		/* find out the current status */
+
+		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+#endif /* CONFIG_FEC_LXT970 */
+
+/* ------------------------------------------------------------------------- */
+/* The Level one LXT971 is used on some of my custom boards                  */
+
+#ifdef CONFIG_FCC_LXT971
+
+/* register definitions for the 971 */
+
+#define MII_LXT971_PCR       16  /* Port Control Register     */
+#define MII_LXT971_SR2       17  /* Status Register 2         */
+#define MII_LXT971_IER       18  /* Interrupt Enable Register */
+#define MII_LXT971_ISR       19  /* Interrupt Status Register */
+#define MII_LXT971_LCR       20  /* LED Control Register      */
+#define MII_LXT971_TCR       30  /* Transmit Control Register */
+
+/*
+ * I had some nice ideas of running the MDIO faster...
+ * The 971 should support 8MHz and I tried it, but things acted really
+ * weird, so 2.5 MHz ought to be enough for anyone...
+ */
+
+static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_STAT_SPMASK);
+
+	if (mii_reg & 0x4000) {
+		if (mii_reg & 0x0200)
+			s |= PHY_STAT_100FDX;
+		else
+			s |= PHY_STAT_100HDX;
+	} else {
+		if (mii_reg & 0x0200)
+			s |= PHY_STAT_10FDX;
+		else
+			s |= PHY_STAT_10HDX;
+	}
+	if (mii_reg & 0x0008)
+		s |= PHY_STAT_FAULT;
+
+	fep->phy_status = s;
+}
+
+static phy_info_t phy_info_lxt971 = {
+	0x0001378e,
+	"LXT971",
+
+	(const phy_cmd_t []) {  /* config */
+//		{ mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10  Mbps, HD */
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+
+		/* Somehow does the 971 tell me that the link is down
+		 * the first read after power-up.
+		 * read here to get a valid value in ack_int */
+
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+		/* find out the current status */
+
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
+
+		/* we only need to read ISR to acknowledge */
+
+		{ mk_mii_read(MII_LXT971_ISR), NULL },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+#endif /* CONFIG_FEC_LXT970 */
+
+
+/* ------------------------------------------------------------------------- */
+/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
+
+#ifdef CONFIG_FCC_QS6612
+
+/* register definitions */
+
+#define MII_QS6612_MCR       17  /* Mode Control Register      */
+#define MII_QS6612_FTR       27  /* Factory Test Register      */
+#define MII_QS6612_MCO       28  /* Misc. Control Register     */
+#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
+#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
+#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
+
+static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_STAT_SPMASK);
+
+	switch((mii_reg >> 2) & 7) {
+	case 1: s |= PHY_STAT_10HDX;  break;
+	case 2: s |= PHY_STAT_100HDX; break;
+	case 5: s |= PHY_STAT_10FDX;  break;
+	case 6: s |= PHY_STAT_100FDX; break;
+	}
+
+	fep->phy_status = s;
+}
+
+static phy_info_t phy_info_qs6612 = {
+	0x00181440,
+	"QS6612",
+
+	(const phy_cmd_t []) {  /* config */
+//	{ mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10  Mbps */
+
+		/* The PHY powers up isolated on the RPX,
+		 * so send a command to allow operation.
+		 */
+
+		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
+
+		/* parse cr and anar to get some info */
+
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+
+		/* we need to read ISR, SR and ANER to acknowledge */
+
+		{ mk_mii_read(MII_QS6612_ISR), NULL },
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_REG_ANER), NULL },
+
+		/* read pcr to get info */
+
+		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+
+#endif /* CONFIG_FEC_QS6612 */
+
+
+/* ------------------------------------------------------------------------- */
+/* The Davicom DM9131 is used on the HYMOD board			     */
+
+#ifdef CONFIG_FCC_DM9131
+
+/* register definitions */
+
+#define MII_DM9131_ACR		16	/* Aux. Config Register		*/
+#define MII_DM9131_ACSR		17	/* Aux. Config/Status Register	*/
+#define MII_DM9131_10TCSR	18	/* 10BaseT Config/Status Reg.	*/
+#define MII_DM9131_INTR		21	/* Interrupt Register		*/
+#define MII_DM9131_RECR		22	/* Receive Error Counter Reg.	*/
+#define MII_DM9131_DISCR	23	/* Disconnect Counter Register	*/
+
+static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	s &= ~(PHY_STAT_SPMASK);
+
+	switch ((mii_reg >> 12) & 0xf) {
+	case 1: s |= PHY_STAT_10HDX;  break;
+	case 2: s |= PHY_STAT_10FDX;  break;
+	case 4: s |= PHY_STAT_100HDX; break;
+	case 8: s |= PHY_STAT_100FDX; break;
+	}
+
+	fep->phy_status = s;
+}
+
+static phy_info_t phy_info_dm9131 = {
+	0x00181b80,
+	"DM9131",
+
+	(const phy_cmd_t []) {  /* config */
+		/* parse cr and anar to get some info */
+		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
+		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* startup - enable interrupts */
+		{ mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
+		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) { /* ack_int */
+
+		/* we need to read INTR, SR and ANER to acknowledge */
+
+		{ mk_mii_read(MII_DM9131_INTR), NULL },
+		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
+		{ mk_mii_read(MII_REG_ANER), NULL },
+
+		/* read acsr to get info */
+
+		{ mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
+		{ mk_mii_end, }
+	},
+	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
+		{ mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
+		{ mk_mii_end, }
+	},
+};
+
+
+#endif /* CONFIG_FEC_DM9131 */
+
+
+static phy_info_t *phy_info[] = {
+
+#ifdef CONFIG_FCC_LXT970
+	&phy_info_lxt970,
+#endif /* CONFIG_FEC_LXT970 */
+
+#ifdef CONFIG_FCC_LXT971
+	&phy_info_lxt971,
+#endif /* CONFIG_FEC_LXT971 */
+
+#ifdef CONFIG_FCC_QS6612
+	&phy_info_qs6612,
+#endif /* CONFIG_FEC_QS6612 */
+
+#ifdef CONFIG_FCC_DM9131
+	&phy_info_dm9131,
+#endif /* CONFIG_FEC_DM9131 */
+
+	NULL
+};
+
+static void mii_display_status(struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	if (!fep->link && !fep->old_link) {
+		/* Link is still down - don't print anything */
+		return;
+	}
+
+	printk("%s: status: ", dev->name);
+
+	if (!fep->link) {
+		printk("link down");
+	} else {
+		printk("link up");
+
+		switch(s & PHY_STAT_SPMASK) {
+		case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
+		case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
+		case PHY_STAT_10FDX:  printk(", 10 Mbps Full Duplex");  break;
+		case PHY_STAT_10HDX:  printk(", 10 Mbps Half Duplex");  break;
+		default:
+			printk(", Unknown speed/duplex");
+		}
+
+		if (s & PHY_STAT_ANC)
+			printk(", auto-negotiation complete");
+	}
+
+	if (s & PHY_STAT_FAULT)
+		printk(", remote fault");
+
+	printk(".\n");
+}
+
+static void mii_display_config(struct net_device *dev)
+{
+	volatile struct fcc_enet_private *fep = dev->priv;
+	uint s = fep->phy_status;
+
+	printk("%s: config: auto-negotiation ", dev->name);
+
+	if (s & PHY_CONF_ANE)
+		printk("on");
+	else
+		printk("off");
+
+	if (s & PHY_CONF_100FDX)
+		printk(", 100FDX");
+	if (s & PHY_CONF_100HDX)
+		printk(", 100HDX");
+	if (s & PHY_CONF_10FDX)
+		printk(", 10FDX");
+	if (s & PHY_CONF_10HDX)
+		printk(", 10HDX");
+	if (!(s & PHY_CONF_SPMASK))
+		printk(", No speed/duplex selected?");
+
+	if (s & PHY_CONF_LOOP)
+		printk(", loopback enabled");
+
+	printk(".\n");
+
+	fep->sequence_done = 1;
+}
+
+static void mii_relink(struct net_device *dev)
+{
+	struct fcc_enet_private *fep = dev->priv;
+	int duplex;
+
+	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
+	mii_display_status(dev);
+	fep->old_link = fep->link;
+
+	if (fep->link) {
+		duplex = 0;
+		if (fep->phy_status
+		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
+			duplex = 1;
+		fcc_restart(dev, duplex);
+	} else {
+		fcc_stop(dev);
+	}
+}
+
+static void mii_queue_relink(uint mii_reg, struct net_device *dev)
+{
+	struct fcc_enet_private *fep = dev->priv;
+
+	fep->phy_task.routine = (void *)mii_relink;
+	fep->phy_task.data = dev;
+	schedule_task(&fep->phy_task);
+}
+
+static void mii_queue_config(uint mii_reg, struct net_device *dev)
+{
+	struct fcc_enet_private *fep = dev->priv;
+
+	fep->phy_task.routine = (void *)mii_display_config;
+	fep->phy_task.data = dev;
+	schedule_task(&fep->phy_task);
+}
+
+
+
+phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
+			       { mk_mii_end, } };
+phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
+			       { mk_mii_end, } };
+
+
+/* Read remainder of PHY ID.
+*/
+static void
+mii_discover_phy3(uint mii_reg, struct net_device *dev)
+{
+	struct fcc_enet_private *fep;
+	int	i;
+
+	fep = dev->priv;
+	fep->phy_id |= (mii_reg & 0xffff);
+
+	for(i = 0; phy_info[i]; i++)
+		if(phy_info[i]->id == (fep->phy_id >> 4))
+			break;
+
+	if(!phy_info[i])
+		panic("%s: PHY id 0x%08x is not supported!\n",
+		      dev->name, fep->phy_id);
+
+	fep->phy = phy_info[i];
+
+	printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
+		dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
+}
+
+/* Scan all of the MII PHY addresses looking for someone to respond
+ * with a valid ID.  This usually happens quickly.
+ */
+static void
+mii_discover_phy(uint mii_reg, struct net_device *dev)
+{
+	struct fcc_enet_private *fep;
+	uint	phytype;
+
+	fep = dev->priv;
+
+	if ((phytype = (mii_reg & 0xfff)) != 0xfff) {
+
+		/* Got first part of ID, now get remainder. */
+		fep->phy_id = phytype << 16;
+		mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
+	} else {
+		fep->phy_addr++;
+		if (fep->phy_addr < 32) {
+			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
+							mii_discover_phy);
+		} else {
+			printk("fec: No PHY device found.\n");
+		}
+	}
+}
+
+/* This interrupt occurs when the PHY detects a link change. */
+static void
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+	struct	net_device *dev = dev_id;
+	struct fcc_enet_private *fep = dev->priv;
+
+	mii_do_cmd(dev, fep->phy->ack_int);
+	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
+}
+
+#endif	/* CONFIG_USE_MDIO */
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering.  Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not.  I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+static void
+set_multicast_list(struct net_device *dev)
+{
+	struct	fcc_enet_private *cep;
+	struct	dev_mc_list *dmi;
+	u_char	*mcptr, *tdptr;
+	volatile fcc_enet_t *ep;
+	int	i, j;
+
+	cep = (struct fcc_enet_private *)dev->priv;
+
+return;
+	/* Get pointer to FCC area in parameter RAM.
+	*/
+	ep = (fcc_enet_t *)dev->base_addr;
+
+	if (dev->flags&IFF_PROMISC) {
+
+		/* Log any net taps. */
+		printk("%s: Promiscuous mode enabled.\n", dev->name);
+		cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
+	} else {
+
+		cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
+
+		if (dev->flags & IFF_ALLMULTI) {
+			/* Catch all multicast addresses, so set the
+			 * filter to all 1's.
+			 */
+			ep->fen_gaddrh = 0xffffffff;
+			ep->fen_gaddrl = 0xffffffff;
+		}
+		else {
+			/* Clear filter and add the addresses in the list.
+			*/
+			ep->fen_gaddrh = 0;
+			ep->fen_gaddrl = 0;
+
+			dmi = dev->mc_list;
+
+			for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
+
+				/* Only support group multicast for now.
+				*/
+				if (!(dmi->dmi_addr[0] & 1))
+					continue;
+
+				/* The address in dmi_addr is LSB first,
+				 * and taddr is MSB first.  We have to
+				 * copy bytes MSB first from dmi_addr.
+				 */
+				mcptr = (u_char *)dmi->dmi_addr + 5;
+				tdptr = (u_char *)&ep->fen_taddrh;
+				for (j=0; j<6; j++)
+					*tdptr++ = *mcptr--;
+
+				/* Ask CPM to run CRC and set bit in
+				 * filter mask.
+				 */
+				cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
+						cep->fip->fc_cpmblock, 0x0c,
+						CPM_CR_SET_GADDR) | CPM_CR_FLG;
+				udelay(10);
+				while (cpmp->cp_cpcr & CPM_CR_FLG);
+			}
+		}
+	}
+}
+
+
+/* Set the individual MAC address.
+ */
+int fcc_enet_set_mac_address(struct net_device *dev, void *p)
+{
+	struct sockaddr *addr= (struct sockaddr *) p;
+	struct fcc_enet_private *cep;
+	volatile fcc_enet_t *ep;
+	unsigned char *eap;
+	int i;
+
+	cep = (struct fcc_enet_private *)(dev->priv);
+	ep = cep->ep;
+	
+        if (netif_running(dev))
+                return -EBUSY;
+
+        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
+	
+	eap = (unsigned char *) &(ep->fen_paddrh);
+	for (i=5; i>=0; i--)
+		*eap++ = addr->sa_data[i];
+
+        return 0;
+}
+
+
+/* Initialize the CPM Ethernet on FCC.
+ */
+int __init fec_enet_init(void)
+{
+	struct net_device *dev;
+	struct fcc_enet_private *cep;
+	fcc_info_t	*fip;
+	int	i, np;
+	volatile	cpm2_map_t		*immap;
+	volatile	iop_cpm2_t	*io;
+
+	immap = (cpm2_map_t *)CPM_MAP_ADDR;	/* and to internal registers */
+	io = &immap->im_ioport;
+
+	np = sizeof(fcc_ports) / sizeof(fcc_info_t);
+	fip = fcc_ports;
+
+	while (np-- > 0) {
+
+		/* Allocate some private information.
+		*/
+		cep = (struct fcc_enet_private *)
+					kmalloc(sizeof(*cep), GFP_KERNEL);
+		if (cep == NULL)
+			return -ENOMEM;
+
+		__clear_user(cep,sizeof(*cep));
+		spin_lock_init(&cep->lock);
+		cep->fip = fip;
+
+		/* Create an Ethernet device instance.
+		*/
+		dev = init_etherdev(0, 0);
+		dev->priv = cep;
+
+		init_fcc_shutdown(fip, cep, immap);
+		init_fcc_ioports(fip, io, immap);
+		init_fcc_param(fip, dev, immap);
+
+		dev->base_addr = (unsigned long)(cep->ep);
+
+		/* The CPM Ethernet specific entries in the device
+		 * structure.
+		 */
+		dev->open = fcc_enet_open;
+		dev->hard_start_xmit = fcc_enet_start_xmit;
+		dev->tx_timeout = fcc_enet_timeout;
+		dev->watchdog_timeo = TX_TIMEOUT;
+		dev->stop = fcc_enet_close;
+		dev->get_stats = fcc_enet_get_stats;
+		dev->set_multicast_list = set_multicast_list;
+		dev->set_mac_address = fcc_enet_set_mac_address;
+
+		init_fcc_startup(fip, dev);
+
+		printk("%s: FCC ENET Version 0.3, ", dev->name);
+		for (i=0; i<5; i++)
+			printk("%02x:", dev->dev_addr[i]);
+		printk("%02x\n", dev->dev_addr[5]);
+
+#ifdef	CONFIG_USE_MDIO
+		/* Queue up command to detect the PHY and initialize the
+	 	* remainder of the interface.
+	 	*/
+		cep->phy_addr = 0;
+		mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
+#endif	/* CONFIG_USE_MDIO */
+
+		fip++;
+	}
+
+	return 0;
+}
+
+/* Make sure the device is shut down during initialization.
+*/
+static void __init
+init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
+						volatile cpm2_map_t *immap)
+{
+	volatile	fcc_enet_t	*ep;
+	volatile	fcc_t		*fccp;
+
+	/* Get pointer to FCC area in parameter RAM.
+	*/
+	ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
+
+	/* And another to the FCC register area.
+	*/
+	fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
+	cep->fccp = fccp;		/* Keep the pointers handy */
+	cep->ep = ep;
+
+	/* Disable receive and transmit in case someone left it running.
+	*/
+	fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
+}
+
+/* Initialize the I/O pins for the FCC Ethernet.
+*/
+static void __init
+init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
+						volatile cpm2_map_t *immap)
+{
+
+	/* FCC1 pins are on port A/C.  FCC2/3 are port B/C.
+	*/
+	if (fip->fc_proff == PROFF_FCC1) {
+		/* Configure port A and C pins for FCC1 Ethernet.
+		 */
+		io->iop_pdira &= ~PA1_DIRA0;
+		io->iop_pdira |= PA1_DIRA1;
+		io->iop_psora &= ~PA1_PSORA0;
+		io->iop_psora |= PA1_PSORA1;
+		io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1);
+	}
+	if (fip->fc_proff == PROFF_FCC2) {
+		/* Configure port B and C pins for FCC Ethernet.
+		 */
+		io->iop_pdirb &= ~PB2_DIRB0;
+		io->iop_pdirb |= PB2_DIRB1;
+		io->iop_psorb &= ~PB2_PSORB0;
+		io->iop_psorb |= PB2_PSORB1;
+		io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1);
+	}
+	if (fip->fc_proff == PROFF_FCC3) {
+		/* Configure port B and C pins for FCC Ethernet.
+		 */
+		io->iop_pdirb &= ~PB3_DIRB0;
+		io->iop_pdirb |= PB3_DIRB1;
+		io->iop_psorb &= ~PB3_PSORB0;
+		io->iop_psorb |= PB3_PSORB1;
+		io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1);
+	}
+
+	/* Port C has clocks......
+	*/
+	io->iop_psorc &= ~(fip->fc_trxclocks);
+	io->iop_pdirc &= ~(fip->fc_trxclocks);
+	io->iop_pparc |= fip->fc_trxclocks;
+
+#ifdef	CONFIG_USE_MDIO
+	/* ....and the MII serial clock/data.
+	*/
+	io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
+	io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
+	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
+	io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
+#endif	/* CONFIG_USE_MDIO */
+
+	/* Configure Serial Interface clock routing.
+	 * First, clear all FCC bits to zero,
+	 * then set the ones we want.
+	 */
+	immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
+	immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
+}
+
+static void __init
+init_fcc_param(fcc_info_t *fip, struct net_device *dev,
+						volatile cpm2_map_t *immap)
+{
+	unsigned char	*eap;
+	unsigned long	mem_addr;
+	bd_t		*bd;
+	int		i, j;
+	struct		fcc_enet_private *cep;
+	volatile	fcc_enet_t	*ep;
+	volatile	cbd_t		*bdp;
+	volatile	cpm_cpm2_t	*cp;
+
+	cep = (struct fcc_enet_private *)(dev->priv);
+	ep = cep->ep;
+	cp = cpmp;
+
+	bd = (bd_t *)__res;
+
+	/* Zero the whole thing.....I must have missed some individually.
+	 * It works when I do this.
+	 */
+	memset((char *)ep, 0, sizeof(fcc_enet_t));
+
+	/* Allocate space for the buffer descriptors in the DP ram.
+	 * These are relative offsets in the DP ram address space.
+	 * Initialize base addresses for the buffer descriptors.
+	 */
+#if 0
+	/* I really want to do this, but for some reason it doesn't
+	 * work with the data cache enabled, so I allocate from the
+	 * main memory instead.
+	 */
+	i = cpm2_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_rbase = (uint)&immap->im_dprambase[i];
+	cep->rx_bd_base = (cbd_t *)&immap->im_dprambase[i];
+
+	i = cpm2_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_tbase = (uint)&immap->im_dprambase[i];
+	cep->tx_bd_base = (cbd_t *)&immap->im_dprambase[i];
+#else
+	cep->rx_bd_base = (cbd_t *)cpm2_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
+	cep->tx_bd_base = (cbd_t *)cpm2_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
+	ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
+#endif
+
+	cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
+	cep->cur_rx = cep->rx_bd_base;
+
+	ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
+	ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
+
+	/* Set maximum bytes per receive buffer.
+	 * It must be a multiple of 32.
+	 */
+	ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
+
+	/* Allocate space in the reserved FCC area of DPRAM for the
+	 * internal buffers.  No one uses this space (yet), so we
+	 * can do this.  Later, we will add resource management for
+	 * this area.
+	 */
+	mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
+	ep->fen_genfcc.fcc_riptr = mem_addr;
+	ep->fen_genfcc.fcc_tiptr = mem_addr+32;
+	ep->fen_padptr = mem_addr+64;
+	memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
+
+	ep->fen_genfcc.fcc_rbptr = 0;
+	ep->fen_genfcc.fcc_tbptr = 0;
+	ep->fen_genfcc.fcc_rcrc = 0;
+	ep->fen_genfcc.fcc_tcrc = 0;
+	ep->fen_genfcc.fcc_res1 = 0;
+	ep->fen_genfcc.fcc_res2 = 0;
+
+	ep->fen_camptr = 0;	/* CAM isn't used in this driver */
+
+	/* Set CRC preset and mask.
+	*/
+	ep->fen_cmask = 0xdebb20e3;
+	ep->fen_cpres = 0xffffffff;
+
+	ep->fen_crcec = 0;	/* CRC Error counter */
+	ep->fen_alec = 0;	/* alignment error counter */
+	ep->fen_disfc = 0;	/* discard frame counter */
+	ep->fen_retlim = 15;	/* Retry limit threshold */
+	ep->fen_pper = 0;	/* Normal persistence */
+
+	/* Clear hash filter tables.
+	*/
+	ep->fen_gaddrh = 0;
+	ep->fen_gaddrl = 0;
+	ep->fen_iaddrh = 0;
+	ep->fen_iaddrl = 0;
+
+	/* Clear the Out-of-sequence TxBD.
+	*/
+	ep->fen_tfcstat = 0;
+	ep->fen_tfclen = 0;
+	ep->fen_tfcptr = 0;
+
+	ep->fen_mflr = PKT_MAXBUF_SIZE;   /* maximum frame length register */
+	ep->fen_minflr = PKT_MINBUF_SIZE;  /* minimum frame length register */
+
+	/* Set Ethernet station address.
+	 *
+	 * This is supplied in the board information structure, so we
+	 * copy that into the controller.
+	 * So, far we have only been given one Ethernet address. We make
+	 * it unique by toggling selected bits in the upper byte of the
+	 * non-static part of the address (for the second and third ports,
+	 * the first port uses the address supplied as is).
+	 */
+	eap = (unsigned char *)&(ep->fen_paddrh);
+	for (i=5; i>=0; i--) {
+
+/* 
+ * The EP8260 only uses FCC3, so we can safely give it the real
+ * MAC address.
+ */
+#ifndef CONFIG_RPX6
+		if (i == 3 && fip->fc_fccnum != 0) {
+			dev->dev_addr[i] = bd->bi_enetaddr[i];
+			dev->dev_addr[i] ^= (1 << (7 - fip->fc_fccnum));
+			*eap++ = dev->dev_addr[i];
+		}
+		else {
+			*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
+		}
+#else
+		*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
+#endif
+	}
+
+	ep->fen_taddrh = 0;
+	ep->fen_taddrm = 0;
+	ep->fen_taddrl = 0;
+
+	ep->fen_maxd1 = PKT_MAXDMA_SIZE;	/* maximum DMA1 length */
+	ep->fen_maxd2 = PKT_MAXDMA_SIZE;	/* maximum DMA2 length */
+
+	/* Clear stat counters, in case we ever enable RMON.
+	*/
+	ep->fen_octc = 0;
+	ep->fen_colc = 0;
+	ep->fen_broc = 0;
+	ep->fen_mulc = 0;
+	ep->fen_uspc = 0;
+	ep->fen_frgc = 0;
+	ep->fen_ospc = 0;
+	ep->fen_jbrc = 0;
+	ep->fen_p64c = 0;
+	ep->fen_p65c = 0;
+	ep->fen_p128c = 0;
+	ep->fen_p256c = 0;
+	ep->fen_p512c = 0;
+	ep->fen_p1024c = 0;
+
+	ep->fen_rfthr = 0;	/* Suggested by manual */
+	ep->fen_rfcnt = 0;
+	ep->fen_cftype = 0;
+
+	/* Now allocate the host memory pages and initialize the
+	 * buffer descriptors.
+	 */
+	bdp = cep->tx_bd_base;
+	for (i=0; i<TX_RING_SIZE; i++) {
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		bdp->cbd_sc = 0;
+		bdp->cbd_datlen = 0;
+		bdp->cbd_bufaddr = 0;
+		bdp++;
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	bdp = cep->rx_bd_base;
+	for (i=0; i<FCC_ENET_RX_PAGES; i++) {
+
+		/* Allocate a page.
+		*/
+		mem_addr = __get_free_page(GFP_KERNEL);
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
+			bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
+			bdp->cbd_datlen = 0;
+			bdp->cbd_bufaddr = __pa(mem_addr);
+			mem_addr += FCC_ENET_RX_FRSIZE;
+			bdp++;
+		}
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* Let's re-initialize the channel now.  We have to do it later
+	 * than the manual describes because we have just now finished
+	 * the BD initialization.
+	 */
+	cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
+			CPM_CR_INIT_TRX) | CPM_CR_FLG;
+	while (cp->cp_cpcr & CPM_CR_FLG);
+
+	cep->skb_cur = cep->skb_dirty = 0;
+}
+
+/* Let 'er rip.
+*/
+static void __init
+init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
+{
+	volatile fcc_t	*fccp;
+	struct fcc_enet_private *cep;
+
+	cep = (struct fcc_enet_private *)(dev->priv);
+	fccp = cep->fccp;
+
+	fccp->fcc_fcce = 0xffff;	/* Clear any pending events */
+
+	/* Enable interrupts for transmit error, complete frame
+	 * received, and any transmit buffer we have also set the
+	 * interrupt flag.
+	 */
+	fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
+
+	/* Install our interrupt handler.
+	*/
+	if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
+				dev) < 0)
+		printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
+
+#ifdef	CONFIG_USE_MDIO
+	if (request_8xxirq(PHY_INTERRUPT, mii_link_interrupt, 0,
+							"mii", dev) < 0)
+		printk("Can't get MII IRQ %d\n", fip->fc_interrupt);
+#endif	/* CONFIG_USE_MDIO */
+
+	/* Set GFMR to enable Ethernet operating mode.
+	 */
+	fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
+
+	/* Set sync/delimiters.
+	*/
+	fccp->fcc_fdsr = 0xd555;
+
+	/* Set protocol specific processing mode for Ethernet.
+	 * This has to be adjusted for Full Duplex operation after we can
+	 * determine how to detect that.
+	 */
+	fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
+
+#ifdef CONFIG_PQ2ADS
+	/* Enable the PHY.
+	*/
+        *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
+        *(volatile uint *)(BCSR_ADDR + 4) |=  BCSR1_FETH_RST;
+#endif
+
+#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
+	/* start in full duplex mode, and negotiate speed
+	 */
+	fcc_restart (dev, 1);
+#else
+	/* start in half duplex mode
+	 */
+	fcc_restart (dev, 0);
+#endif
+}
+
+#ifdef	CONFIG_USE_MDIO
+/* MII command/status interface.
+ * I'm not going to describe all of the details.  You can find the
+ * protocol definition in many other places, including the data sheet
+ * of most PHY parts.
+ * I wonder what "they" were thinking (maybe weren't) when they leave
+ * the I2C in the CPM but I have to toggle these bits......
+ */
+
+#define FCC_PDATC_MDIO(bit)					\
+	if (bit)						\
+		io->iop_pdatc |= fip->fc_mdio;			\
+	else							\
+		io->iop_pdatc &= ~fip->fc_mdio;
+
+#define FCC_PDATC_MDC(bit)					\
+	if (bit)						\
+		io->iop_pdatc |= fip->fc_mdck;			\
+	else							\
+		io->iop_pdatc &= ~fip->fc_mdck;
+
+static uint
+mii_send_receive(fcc_info_t *fip, uint cmd)
+{
+	uint		retval;
+	int		read_op, i, off;
+	volatile	cpm2_map_t		*immap;
+	volatile	iop_cpm2_t	*io;
+
+	immap = (cpm2_map_t *)CPM_MAP_ADDR;
+	io = &immap->im_ioport;
+
+	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
+
+	read_op = ((cmd & 0xf0000000) == 0x60000000);
+
+	/* Write preamble
+	 */
+	for (i = 0; i < 32; i++)
+	{
+		FCC_PDATC_MDC(0);
+		FCC_PDATC_MDIO(1);
+		udelay(1);
+		FCC_PDATC_MDC(1);
+		udelay(1);
+	}
+
+	/* Write data
+	 */
+	for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
+	{
+		FCC_PDATC_MDC(0);
+		FCC_PDATC_MDIO((cmd >> off) & 0x00000001);
+		udelay(1);
+		FCC_PDATC_MDC(1);
+		udelay(1);
+	}
+
+	retval = cmd;
+
+	if (read_op)
+	{
+		retval >>= 16;
+
+		FCC_PDATC_MDC(0);
+		io->iop_pdirc &= ~fip->fc_mdio;
+		udelay(1);
+		FCC_PDATC_MDC(1);
+		udelay(1);
+		FCC_PDATC_MDC(0);
+		udelay(1);
+
+		for (i = 0, off = 15; i < 16; i++, off--)
+		{
+			FCC_PDATC_MDC(1);
+			retval <<= 1;
+			if (io->iop_pdatc & fip->fc_mdio)
+				retval++;
+			udelay(1);
+			FCC_PDATC_MDC(0);
+			udelay(1);
+		}
+	}
+
+	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
+
+	for (i = 0; i < 32; i++)
+	{
+		FCC_PDATC_MDC(0);
+		FCC_PDATC_MDIO(1);
+		udelay(1);
+		FCC_PDATC_MDC(1);
+		udelay(1);
+	}
+
+	return retval;
+}
+
+static void
+fcc_stop(struct net_device *dev)
+{
+	volatile fcc_t	*fccp;
+	struct fcc_enet_private	*fcp;
+
+	fcp = (struct fcc_enet_private *)(dev->priv);
+	fccp = fcp->fccp;
+
+	/* Disable transmit/receive */
+	fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
+}
+#endif	/* CONFIG_USE_MDIO */
+	
+static void
+fcc_restart(struct net_device *dev, int duplex)
+{
+	volatile fcc_t	*fccp;
+	struct fcc_enet_private	*fcp;
+
+	fcp = (struct fcc_enet_private *)(dev->priv);
+	fccp = fcp->fccp;
+
+	if (duplex)
+		fccp->fcc_fpsmr |= FCC_PSMR_FDE;
+	else
+		fccp->fcc_fpsmr &= ~FCC_PSMR_FDE;
+
+	/* Enable transmit/receive */
+	fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
+}
+
+static int
+fcc_enet_open(struct net_device *dev)
+{
+	struct fcc_enet_private *fep = dev->priv;
+
+#ifdef	CONFIG_USE_MDIO
+	fep->sequence_done = 0;
+	fep->link = 0;
+
+	if (fep->phy) {
+		mii_do_cmd(dev, fep->phy->ack_int);
+		mii_do_cmd(dev, fep->phy->config);
+		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
+		while(!fep->sequence_done)
+			schedule();
+
+		mii_do_cmd(dev, fep->phy->startup);
+		netif_start_queue(dev);
+		return 0;		/* Success */
+	}
+	return -ENODEV;		/* No PHY we understand */
+#else
+	fep->link = 1;
+	netif_start_queue(dev);
+	return 0;					/* Always succeed */
+#endif	/* CONFIG_USE_MDIO */
+}
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)