patch-2.4.21 linux-2.4.21/drivers/ide/ide-io.c
Next file: linux-2.4.21/drivers/ide/ide-iops.c
Previous file: linux-2.4.21/drivers/ide/ide-geometry.c
Back to the patch index
Back to the overall index
- Lines: 1363
- Date:
2003-06-13 07:51:33.000000000 -0700
- Orig file:
linux-2.4.20/drivers/ide/ide-io.c
- Orig date:
1969-12-31 16:00:00.000000000 -0800
diff -urN linux-2.4.20/drivers/ide/ide-io.c linux-2.4.21/drivers/ide/ide-io.c
@@ -0,0 +1,1362 @@
+/*
+ * IDE I/O functions
+ *
+ * Basic PIO and command management functionality.
+ *
+ * This code was split off from ide.c. See ide.c for history and original
+ * copyrights.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2, or (at your option) any
+ * later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * For the avoidance of doubt the "preferred form" of this code is one which
+ * is in an open non patent encumbered format. Where cryptographic key signing
+ * forms part of the process of creating an executable the information
+ * including keys needed to generate an equivalently functional executable
+ * are deemed to be part of the source code.
+ */
+
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kernel.h>
+#include <linux/timer.h>
+#include <linux/mm.h>
+#include <linux/interrupt.h>
+#include <linux/major.h>
+#include <linux/errno.h>
+#include <linux/genhd.h>
+#include <linux/blkpg.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/ide.h>
+#include <linux/devfs_fs_kernel.h>
+#include <linux/completion.h>
+#include <linux/reboot.h>
+#include <linux/cdrom.h>
+#include <linux/seq_file.h>
+#include <linux/kmod.h>
+
+#include <asm/byteorder.h>
+#include <asm/irq.h>
+#include <asm/uaccess.h>
+#include <asm/io.h>
+#include <asm/bitops.h>
+
+#include "ide_modes.h"
+
+#if (DISK_RECOVERY_TIME > 0)
+
+Error So the User Has To Fix the Compilation And Stop Hacking Port 0x43
+Does anyone ever use this anyway ??
+
+/*
+ * For really screwy hardware (hey, at least it *can* be used with Linux)
+ * we can enforce a minimum delay time between successive operations.
+ */
+static unsigned long read_timer (ide_hwif_t *hwif)
+{
+ unsigned long t, flags;
+ int i;
+
+ /* FIXME this is completely unsafe! */
+ local_irq_save(flags);
+ t = jiffies * 11932;
+ outb_p(0, 0x43);
+ i = inb_p(0x40);
+ i |= inb_p(0x40) << 8;
+ local_irq_restore(flags);
+ return (t - i);
+}
+#endif /* DISK_RECOVERY_TIME */
+
+static inline void set_recovery_timer (ide_hwif_t *hwif)
+{
+#if (DISK_RECOVERY_TIME > 0)
+ hwif->last_time = read_timer(hwif);
+#endif /* DISK_RECOVERY_TIME */
+}
+
+/*
+ * ide_end_request - complete an IDE I/O
+ * @drive: IDE device for the I/O
+ * @uptodate:
+ *
+ * This is our end_request wrapper function. We complete the I/O
+ * update random number input and dequeue the request.
+ */
+
+int ide_end_request (ide_drive_t *drive, int uptodate)
+{
+ struct request *rq;
+ unsigned long flags;
+ int ret = 1;
+
+ spin_lock_irqsave(&io_request_lock, flags);
+ rq = HWGROUP(drive)->rq;
+
+ /*
+ * decide whether to reenable DMA -- 3 is a random magic for now,
+ * if we DMA timeout more than 3 times, just stay in PIO
+ */
+ if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
+ drive->state = 0;
+ HWGROUP(drive)->hwif->ide_dma_on(drive);
+ }
+
+ if (!end_that_request_first(rq, uptodate, drive->name)) {
+ add_blkdev_randomness(MAJOR(rq->rq_dev));
+ blkdev_dequeue_request(rq);
+ HWGROUP(drive)->rq = NULL;
+ end_that_request_last(rq);
+ ret = 0;
+ }
+
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ return ret;
+}
+
+EXPORT_SYMBOL(ide_end_request);
+
+/**
+ * ide_end_drive_cmd - end an explicit drive command
+ * @drive: command
+ * @stat: status bits
+ * @err: error bits
+ *
+ * Clean up after success/failure of an explicit drive command.
+ * These get thrown onto the queue so they are synchronized with
+ * real I/O operations on the drive.
+ *
+ * In LBA48 mode we have to read the register set twice to get
+ * all the extra information out.
+ */
+
+void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
+{
+ ide_hwif_t *hwif = HWIF(drive);
+ unsigned long flags;
+ struct request *rq;
+
+ spin_lock_irqsave(&io_request_lock, flags);
+ rq = HWGROUP(drive)->rq;
+ spin_unlock_irqrestore(&io_request_lock, flags);
+
+ switch(rq->cmd) {
+ case IDE_DRIVE_CMD:
+ {
+ u8 *args = (u8 *) rq->buffer;
+ if (rq->errors == 0)
+ rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
+
+ if (args) {
+ args[0] = stat;
+ args[1] = err;
+ args[2] = hwif->INB(IDE_NSECTOR_REG);
+ }
+ break;
+ }
+ case IDE_DRIVE_TASK:
+ {
+ u8 *args = (u8 *) rq->buffer;
+ if (rq->errors == 0)
+ rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
+
+ if (args) {
+ args[0] = stat;
+ args[1] = err;
+ args[2] = hwif->INB(IDE_NSECTOR_REG);
+ args[3] = hwif->INB(IDE_SECTOR_REG);
+ args[4] = hwif->INB(IDE_LCYL_REG);
+ args[5] = hwif->INB(IDE_HCYL_REG);
+ args[6] = hwif->INB(IDE_SELECT_REG);
+ }
+ break;
+ }
+ case IDE_DRIVE_TASKFILE:
+ {
+ ide_task_t *args = (ide_task_t *) rq->special;
+ if (rq->errors == 0)
+ rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
+
+ if (args) {
+ if (args->tf_in_flags.b.data) {
+ u16 data = hwif->INW(IDE_DATA_REG);
+ args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
+ args->hobRegister[IDE_DATA_OFFSET_HOB] = (data >> 8) & 0xFF;
+ }
+ args->tfRegister[IDE_ERROR_OFFSET] = err;
+ args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
+ args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
+ args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
+ args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
+ args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
+ args->tfRegister[IDE_STATUS_OFFSET] = stat;
+
+ if (drive->addressing == 1) {
+ hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG_HOB);
+ args->hobRegister[IDE_FEATURE_OFFSET_HOB] = hwif->INB(IDE_FEATURE_REG);
+ args->hobRegister[IDE_NSECTOR_OFFSET_HOB] = hwif->INB(IDE_NSECTOR_REG);
+ args->hobRegister[IDE_SECTOR_OFFSET_HOB] = hwif->INB(IDE_SECTOR_REG);
+ args->hobRegister[IDE_LCYL_OFFSET_HOB] = hwif->INB(IDE_LCYL_REG);
+ args->hobRegister[IDE_HCYL_OFFSET_HOB] = hwif->INB(IDE_HCYL_REG);
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ spin_lock_irqsave(&io_request_lock, flags);
+ blkdev_dequeue_request(rq);
+ HWGROUP(drive)->rq = NULL;
+ end_that_request_last(rq);
+ spin_unlock_irqrestore(&io_request_lock, flags);
+}
+
+EXPORT_SYMBOL(ide_end_drive_cmd);
+
+/**
+ * try_to_flush_leftover_data - flush junk
+ * @drive: drive to flush
+ *
+ * try_to_flush_leftover_data() is invoked in response to a drive
+ * unexpectedly having its DRQ_STAT bit set. As an alternative to
+ * resetting the drive, this routine tries to clear the condition
+ * by read a sector's worth of data from the drive. Of course,
+ * this may not help if the drive is *waiting* for data from *us*.
+ */
+void try_to_flush_leftover_data (ide_drive_t *drive)
+{
+ int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
+
+ if (drive->media != ide_disk)
+ return;
+ while (i > 0) {
+ u32 buffer[16];
+ u32 wcount = (i > 16) ? 16 : i;
+
+ i -= wcount;
+ HWIF(drive)->ata_input_data(drive, buffer, wcount);
+ }
+}
+
+EXPORT_SYMBOL(try_to_flush_leftover_data);
+
+/*
+ * FIXME Add an ATAPI error
+ */
+
+/**
+ * ide_error - handle an error on the IDE
+ * @drive: drive the error occurred on
+ * @msg: message to report
+ * @stat: status bits
+ *
+ * ide_error() takes action based on the error returned by the drive.
+ * For normal I/O that may well include retries. We deal with
+ * both new-style (taskfile) and old style command handling here.
+ * In the case of taskfile command handling there is work left to
+ * do
+ */
+
+ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
+{
+ ide_hwif_t *hwif;
+ struct request *rq;
+ u8 err;
+
+ err = ide_dump_status(drive, msg, stat);
+ if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
+ return ide_stopped;
+
+ hwif = HWIF(drive);
+ /* retry only "normal" I/O: */
+ if (rq->cmd == IDE_DRIVE_CMD || rq->cmd == IDE_DRIVE_TASK) {
+ rq->errors = 1;
+ ide_end_drive_cmd(drive, stat, err);
+ return ide_stopped;
+ }
+ if (rq->cmd == IDE_DRIVE_TASKFILE) {
+ rq->errors = 1;
+ ide_end_drive_cmd(drive, stat, err);
+// ide_end_taskfile(drive, stat, err);
+ return ide_stopped;
+ }
+
+ if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
+ /* other bits are useless when BUSY */
+ rq->errors |= ERROR_RESET;
+ } else {
+ if (drive->media != ide_disk)
+ goto media_out;
+
+ if (stat & ERR_STAT) {
+ /* err has different meaning on cdrom and tape */
+ if (err == ABRT_ERR) {
+ if (drive->select.b.lba &&
+ (hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY))
+ /* some newer drives don't
+ * support WIN_SPECIFY
+ */
+ return ide_stopped;
+ } else if ((err & BAD_CRC) == BAD_CRC) {
+ drive->crc_count++;
+ /* UDMA crc error -- just retry the operation */
+ } else if (err & (BBD_ERR | ECC_ERR)) {
+ /* retries won't help these */
+ rq->errors = ERROR_MAX;
+ } else if (err & TRK0_ERR) {
+ /* help it find track zero */
+ rq->errors |= ERROR_RECAL;
+ }
+ }
+media_out:
+ if ((stat & DRQ_STAT) && rq->cmd != WRITE)
+ try_to_flush_leftover_data(drive);
+ }
+ if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) {
+ /* force an abort */
+ hwif->OUTB(WIN_IDLEIMMEDIATE,IDE_COMMAND_REG);
+ }
+ if (rq->errors >= ERROR_MAX) {
+ DRIVER(drive)->end_request(drive, 0);
+ } else {
+ if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
+ ++rq->errors;
+ return ide_do_reset(drive);
+ }
+ if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
+ drive->special.b.recalibrate = 1;
+ ++rq->errors;
+ }
+ return ide_stopped;
+}
+
+EXPORT_SYMBOL(ide_error);
+
+/**
+ * ide_abort - abort pending IDE operatins
+ * @drive: drive the error occurred on
+ * @msg: message to report
+ *
+ * ide_abort kills and cleans up when we are about to do a
+ * host initiated reset on active commands. Longer term we
+ * want handlers to have sensible abort handling themselves
+ *
+ * This differs fundamentally from ide_error because in
+ * this case the command is doing just fine when we
+ * blow it away.
+ */
+
+ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
+{
+ ide_hwif_t *hwif;
+ struct request *rq;
+
+ if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
+ return ide_stopped;
+
+ hwif = HWIF(drive);
+ /* retry only "normal" I/O: */
+ if (rq->cmd == IDE_DRIVE_CMD || rq->cmd == IDE_DRIVE_TASK) {
+ rq->errors = 1;
+ ide_end_drive_cmd(drive, BUSY_STAT, 0);
+ return ide_stopped;
+ }
+ if (rq->cmd == IDE_DRIVE_TASKFILE) {
+ rq->errors = 1;
+ ide_end_drive_cmd(drive, BUSY_STAT, 0);
+// ide_end_taskfile(drive, BUSY_STAT, 0);
+ return ide_stopped;
+ }
+
+ rq->errors |= ERROR_RESET;
+ DRIVER(drive)->end_request(drive, 0);
+ return ide_stopped;
+}
+
+EXPORT_SYMBOL(ide_abort);
+
+/**
+ * ide_cmd - issue a simple drive command
+ * @drive: drive the command is for
+ * @cmd: command byte
+ * @nsect: sector byte
+ * @handler: handler for the command completion
+ *
+ * Issue a simple drive command with interrupts.
+ * The drive must be selected beforehand.
+ */
+
+void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, ide_handler_t *handler)
+{
+ ide_hwif_t *hwif = HWIF(drive);
+ if (IDE_CONTROL_REG)
+ hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
+ SELECT_MASK(drive,0);
+ hwif->OUTB(nsect,IDE_NSECTOR_REG);
+ ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
+}
+
+EXPORT_SYMBOL(ide_cmd);
+
+/**
+ * drive_cmd_intr - drive command completion interrupt
+ * @drive: drive the completion interrupt occurred on
+ *
+ * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
+ * We do any neccessary daya reading and then wait for the drive to
+ * go non busy. At that point we may read the error data and complete
+ * the request
+ */
+
+ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
+{
+ struct request *rq = HWGROUP(drive)->rq;
+ ide_hwif_t *hwif = HWIF(drive);
+ u8 *args = (u8 *) rq->buffer;
+ u8 stat = hwif->INB(IDE_STATUS_REG);
+ int retries = 10;
+
+ local_irq_enable();
+ if ((stat & DRQ_STAT) && args && args[3]) {
+ u8 io_32bit = drive->io_32bit;
+ drive->io_32bit = 0;
+ hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
+ drive->io_32bit = io_32bit;
+ while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
+ udelay(100);
+ }
+
+ if (!OK_STAT(stat, READY_STAT, BAD_STAT))
+ return DRIVER(drive)->error(drive, "drive_cmd", stat);
+ /* calls ide_end_drive_cmd */
+ ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
+ return ide_stopped;
+}
+
+EXPORT_SYMBOL(drive_cmd_intr);
+
+/**
+ * do_special - issue some special commands
+ * @drive: drive the command is for
+ *
+ * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
+ * commands to a drive. It used to do much more, but has been scaled
+ * back.
+ */
+
+ide_startstop_t do_special (ide_drive_t *drive)
+{
+ special_t *s = &drive->special;
+
+#ifdef DEBUG
+ printk("%s: do_special: 0x%02x\n", drive->name, s->all);
+#endif
+ if (s->b.set_tune) {
+ s->b.set_tune = 0;
+ if (HWIF(drive)->tuneproc != NULL)
+ HWIF(drive)->tuneproc(drive, drive->tune_req);
+ return ide_stopped;
+ }
+ else
+ return DRIVER(drive)->special(drive);
+}
+
+EXPORT_SYMBOL(do_special);
+
+/**
+ * execute_drive_command - issue special drive command
+ * @drive: the drive to issue th command on
+ * @rq: the request structure holding the command
+ *
+ * execute_drive_cmd() issues a special drive command, usually
+ * initiated by ioctl() from the external hdparm program. The
+ * command can be a drive command, drive task or taskfile
+ * operation. Weirdly you can call it with NULL to wait for
+ * all commands to finish. Don't do this as that is due to change
+ */
+
+ide_startstop_t execute_drive_cmd (ide_drive_t *drive, struct request *rq)
+{
+ ide_hwif_t *hwif = HWIF(drive);
+ switch(rq->cmd) {
+ case IDE_DRIVE_TASKFILE:
+ {
+ ide_task_t *args = rq->special;
+
+ if (!(args)) break;
+
+ if (args->tf_out_flags.all != 0)
+ return flagged_taskfile(drive, args);
+ return do_rw_taskfile(drive, args);
+ }
+ case IDE_DRIVE_TASK:
+ {
+ u8 *args = rq->buffer;
+ u8 sel;
+
+ if (!(args)) break;
+#ifdef DEBUG
+ printk("%s: DRIVE_TASK_CMD ", drive->name);
+ printk("cmd=0x%02x ", args[0]);
+ printk("fr=0x%02x ", args[1]);
+ printk("ns=0x%02x ", args[2]);
+ printk("sc=0x%02x ", args[3]);
+ printk("lcyl=0x%02x ", args[4]);
+ printk("hcyl=0x%02x ", args[5]);
+ printk("sel=0x%02x\n", args[6]);
+#endif
+ hwif->OUTB(args[1], IDE_FEATURE_REG);
+ hwif->OUTB(args[3], IDE_SECTOR_REG);
+ hwif->OUTB(args[4], IDE_LCYL_REG);
+ hwif->OUTB(args[5], IDE_HCYL_REG);
+ sel = (args[6] & ~0x10);
+ if (drive->select.b.unit)
+ sel |= 0x10;
+ hwif->OUTB(sel, IDE_SELECT_REG);
+ ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
+ return ide_started;
+ }
+ case IDE_DRIVE_CMD:
+ {
+ u8 *args = rq->buffer;
+
+ if (!(args)) break;
+#ifdef DEBUG
+ printk("%s: DRIVE_CMD ", drive->name);
+ printk("cmd=0x%02x ", args[0]);
+ printk("sc=0x%02x ", args[1]);
+ printk("fr=0x%02x ", args[2]);
+ printk("xx=0x%02x\n", args[3]);
+#endif
+ if (args[0] == WIN_SMART) {
+ hwif->OUTB(0x4f, IDE_LCYL_REG);
+ hwif->OUTB(0xc2, IDE_HCYL_REG);
+ hwif->OUTB(args[2],IDE_FEATURE_REG);
+ hwif->OUTB(args[1],IDE_SECTOR_REG);
+ ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
+ return ide_started;
+ }
+ hwif->OUTB(args[2],IDE_FEATURE_REG);
+ ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
+ return ide_started;
+ }
+ default:
+ break;
+ }
+ /*
+ * NULL is actually a valid way of waiting for
+ * all current requests to be flushed from the queue.
+ */
+#ifdef DEBUG
+ printk("%s: DRIVE_CMD (null)\n", drive->name);
+#endif
+ ide_end_drive_cmd(drive,
+ hwif->INB(IDE_STATUS_REG),
+ hwif->INB(IDE_ERROR_REG));
+ return ide_stopped;
+}
+
+EXPORT_SYMBOL(execute_drive_cmd);
+
+/**
+ * start_request - start of I/O and command issuing for IDE
+ *
+ * start_request() initiates handling of a new I/O request. It
+ * accepts commands and I/O (read/write) requests. It also does
+ * the final remapping for weird stuff like EZDrive. Once
+ * device mapper can work sector level the EZDrive stuff can go away
+ *
+ * FIXME: this function needs a rename
+ */
+
+ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
+{
+ ide_startstop_t startstop;
+ unsigned long block, blockend;
+ unsigned int minor = MINOR(rq->rq_dev), unit = minor >> PARTN_BITS;
+ ide_hwif_t *hwif = HWIF(drive);
+
+#ifdef DEBUG
+ printk("%s: start_request: current=0x%08lx\n",
+ hwif->name, (unsigned long) rq);
+#endif
+
+ /* bail early if we've exceeded max_failures */
+ if (drive->max_failures && (drive->failures > drive->max_failures)) {
+ goto kill_rq;
+ }
+
+ /*
+ * bail early if we've sent a device to sleep, however how to wake
+ * this needs to be a masked flag. FIXME for proper operations.
+ */
+ if (drive->suspend_reset) {
+ goto kill_rq;
+ }
+
+ if (unit >= MAX_DRIVES) {
+ printk(KERN_ERR "%s: bad device number: %s\n",
+ hwif->name, kdevname(rq->rq_dev));
+ goto kill_rq;
+ }
+#ifdef DEBUG
+ if (rq->bh && !buffer_locked(rq->bh)) {
+ printk(KERN_ERR "%s: block not locked\n", drive->name);
+ goto kill_rq;
+ }
+#endif
+ block = rq->sector;
+ blockend = block + rq->nr_sectors;
+
+ if (blk_fs_request(rq) &&
+ (drive->media == ide_disk || drive->media == ide_floppy)) {
+ if ((blockend < block) || (blockend > drive->part[minor&PARTN_MASK].nr_sects)) {
+ printk(KERN_ERR "%s%c: bad access: block=%ld, count=%ld\n", drive->name,
+ (minor&PARTN_MASK)?'0'+(minor&PARTN_MASK):' ', block, rq->nr_sectors);
+ goto kill_rq;
+ }
+ block += drive->part[minor&PARTN_MASK].start_sect + drive->sect0;
+ }
+ /* Yecch - this will shift the entire interval,
+ possibly killing some innocent following sector */
+ if (block == 0 && drive->remap_0_to_1 == 1)
+ block = 1; /* redirect MBR access to EZ-Drive partn table */
+
+#if (DISK_RECOVERY_TIME > 0)
+ while ((read_timer() - hwif->last_time) < DISK_RECOVERY_TIME);
+#endif
+
+ SELECT_DRIVE(drive);
+ if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
+ printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
+ return startstop;
+ }
+ if (!drive->special.all) {
+ switch(rq->cmd) {
+ case IDE_DRIVE_CMD:
+ case IDE_DRIVE_TASK:
+ return execute_drive_cmd(drive, rq);
+ case IDE_DRIVE_TASKFILE:
+ return execute_drive_cmd(drive, rq);
+ default:
+ break;
+ }
+ return (DRIVER(drive)->do_request(drive, rq, block));
+ }
+ return do_special(drive);
+kill_rq:
+ DRIVER(drive)->end_request(drive, 0);
+ return ide_stopped;
+}
+
+EXPORT_SYMBOL(start_request);
+
+int restart_request (ide_drive_t *drive, struct request *rq)
+{
+ (void) start_request(drive, rq);
+ return 0;
+}
+
+EXPORT_SYMBOL(restart_request);
+
+/**
+ * ide_stall_queue - pause an IDE device
+ * @drive: drive to stall
+ * @timeout: time to stall for (jiffies)
+ *
+ * ide_stall_queue() can be used by a drive to give excess bandwidth back
+ * to the hwgroup by sleeping for timeout jiffies.
+ */
+
+void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
+{
+ if (timeout > WAIT_WORSTCASE)
+ timeout = WAIT_WORSTCASE;
+ drive->sleep = timeout + jiffies;
+}
+
+EXPORT_SYMBOL(ide_stall_queue);
+
+#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
+
+/**
+ * choose_drive - select a drive to service
+ * @hwgroup: hardware group to select on
+ *
+ * choose_drive() selects the next drive which will be serviced.
+ * This is neccessary because the IDE layer can't issue commands
+ * to both drives on the same cable, unlike SCSI.
+ */
+
+static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
+{
+ ide_drive_t *drive, *best;
+
+repeat:
+ best = NULL;
+ drive = hwgroup->drive;
+ do {
+ if (!blk_queue_empty(&drive->queue) && (!drive->sleep || time_after_eq(jiffies, drive->sleep))) {
+ if (!best
+ || (drive->sleep && (!best->sleep || 0 < (signed long)(best->sleep - drive->sleep)))
+ || (!best->sleep && 0 < (signed long)(WAKEUP(best) - WAKEUP(drive))))
+ {
+ if (!blk_queue_plugged(&drive->queue))
+ best = drive;
+ }
+ }
+ } while ((drive = drive->next) != hwgroup->drive);
+ if (best && best->nice1 && !best->sleep && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
+ long t = (signed long)(WAKEUP(best) - jiffies);
+ if (t >= WAIT_MIN_SLEEP) {
+ /*
+ * We *may* have some time to spare, but first let's see if
+ * someone can potentially benefit from our nice mood today..
+ */
+ drive = best->next;
+ do {
+ if (!drive->sleep
+ && 0 < (signed long)(WAKEUP(drive) - (jiffies - best->service_time))
+ && 0 < (signed long)((jiffies + t) - WAKEUP(drive)))
+ {
+ ide_stall_queue(best, IDE_MIN(t, 10 * WAIT_MIN_SLEEP));
+ goto repeat;
+ }
+ } while ((drive = drive->next) != best);
+ }
+ }
+ return best;
+}
+
+/*
+ * Issue a new request to a drive from hwgroup
+ * Caller must have already done spin_lock_irqsave(&io_request_lock, ..);
+ *
+ * A hwgroup is a serialized group of IDE interfaces. Usually there is
+ * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
+ * may have both interfaces in a single hwgroup to "serialize" access.
+ * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
+ * together into one hwgroup for serialized access.
+ *
+ * Note also that several hwgroups can end up sharing a single IRQ,
+ * possibly along with many other devices. This is especially common in
+ * PCI-based systems with off-board IDE controller cards.
+ *
+ * The IDE driver uses the single global io_request_lock spinlock to protect
+ * access to the request queues, and to protect the hwgroup->busy flag.
+ *
+ * The first thread into the driver for a particular hwgroup sets the
+ * hwgroup->busy flag to indicate that this hwgroup is now active,
+ * and then initiates processing of the top request from the request queue.
+ *
+ * Other threads attempting entry notice the busy setting, and will simply
+ * queue their new requests and exit immediately. Note that hwgroup->busy
+ * remains set even when the driver is merely awaiting the next interrupt.
+ * Thus, the meaning is "this hwgroup is busy processing a request".
+ *
+ * When processing of a request completes, the completing thread or IRQ-handler
+ * will start the next request from the queue. If no more work remains,
+ * the driver will clear the hwgroup->busy flag and exit.
+ *
+ * The io_request_lock (spinlock) is used to protect all access to the
+ * hwgroup->busy flag, but is otherwise not needed for most processing in
+ * the driver. This makes the driver much more friendlier to shared IRQs
+ * than previous designs, while remaining 100% (?) SMP safe and capable.
+ */
+/* --BenH: made non-static as ide-pmac.c uses it to kick the hwgroup back
+ * into life on wakeup from machine sleep.
+ */
+void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
+{
+ ide_drive_t *drive;
+ ide_hwif_t *hwif;
+ struct request *rq;
+ ide_startstop_t startstop;
+
+ /* for atari only: POSSIBLY BROKEN HERE(?) */
+ ide_get_lock(ide_intr, hwgroup);
+
+ /* necessary paranoia: ensure IRQs are masked on local CPU */
+ local_irq_disable();
+
+ while (!hwgroup->busy) {
+ hwgroup->busy = 1;
+ drive = choose_drive(hwgroup);
+ if (drive == NULL) {
+ unsigned long sleep = 0;
+ hwgroup->rq = NULL;
+ drive = hwgroup->drive;
+ do {
+ if (drive->sleep && (!sleep || 0 < (signed long)(sleep - drive->sleep)))
+ sleep = drive->sleep;
+ } while ((drive = drive->next) != hwgroup->drive);
+ if (sleep) {
+ /*
+ * Take a short snooze, and then wake up this hwgroup again.
+ * This gives other hwgroups on the same a chance to
+ * play fairly with us, just in case there are big differences
+ * in relative throughputs.. don't want to hog the cpu too much.
+ */
+ if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
+ sleep = jiffies + WAIT_MIN_SLEEP;
+#if 1
+ if (timer_pending(&hwgroup->timer))
+ printk(KERN_ERR "ide_set_handler: timer already active\n");
+#endif
+ /* so that ide_timer_expiry knows what to do */
+ hwgroup->sleeping = 1;
+ mod_timer(&hwgroup->timer, sleep);
+ /* we purposely leave hwgroup->busy==1
+ * while sleeping */
+ } else {
+ /* Ugly, but how can we sleep for the lock
+ * otherwise? perhaps from tq_disk?
+ */
+
+ /* for atari only */
+ ide_release_lock();
+ hwgroup->busy = 0;
+ }
+ /* no more work for this hwgroup (for now) */
+ return;
+ }
+ hwif = HWIF(drive);
+ if (hwgroup->hwif->sharing_irq &&
+ hwif != hwgroup->hwif &&
+ hwif->io_ports[IDE_CONTROL_OFFSET]) {
+ /* set nIEN for previous hwif */
+ SELECT_INTERRUPT(drive);
+ }
+ hwgroup->hwif = hwif;
+ hwgroup->drive = drive;
+ drive->sleep = 0;
+ drive->service_start = jiffies;
+
+ /* paranoia */
+ if (blk_queue_plugged(&drive->queue))
+ printk(KERN_ERR "%s: Huh? nuking plugged queue\n", drive->name);
+
+ rq = blkdev_entry_next_request(&drive->queue.queue_head);
+ hwgroup->rq = rq;
+ /*
+ * Some systems have trouble with IDE IRQs arriving while
+ * the driver is still setting things up. So, here we disable
+ * the IRQ used by this interface while the request is being started.
+ * This may look bad at first, but pretty much the same thing
+ * happens anyway when any interrupt comes in, IDE or otherwise
+ * -- the kernel masks the IRQ while it is being handled.
+ */
+ if (hwif->irq != masked_irq)
+ disable_irq_nosync(hwif->irq);
+ spin_unlock(&io_request_lock);
+ local_irq_enable();
+ /* allow other IRQs while we start this request */
+ startstop = start_request(drive, rq);
+ spin_lock_irq(&io_request_lock);
+ if (hwif->irq != masked_irq)
+ enable_irq(hwif->irq);
+ if (startstop == ide_stopped)
+ hwgroup->busy = 0;
+ }
+}
+
+EXPORT_SYMBOL(ide_do_request);
+
+/*
+ * ide_get_queue() returns the queue which corresponds to a given device.
+ */
+request_queue_t *ide_get_queue (kdev_t dev)
+{
+ ide_hwif_t *hwif = (ide_hwif_t *)blk_dev[MAJOR(dev)].data;
+
+ return &hwif->drives[DEVICE_NR(dev) & 1].queue;
+}
+
+EXPORT_SYMBOL(ide_get_queue);
+
+/*
+ * Passes the stuff to ide_do_request
+ */
+void do_ide_request(request_queue_t *q)
+{
+ ide_do_request(q->queuedata, IDE_NO_IRQ);
+}
+
+/*
+ * un-busy the hwgroup etc, and clear any pending DMA status. we want to
+ * retry the current request in pio mode instead of risking tossing it
+ * all away
+ */
+void ide_dma_timeout_retry(ide_drive_t *drive)
+{
+ ide_hwif_t *hwif = HWIF(drive);
+ struct request *rq;
+
+ /*
+ * end current dma transaction
+ */
+ (void) hwif->ide_dma_end(drive);
+
+ /*
+ * complain a little, later we might remove some of this verbosity
+ */
+ printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
+ (void) hwif->ide_dma_timeout(drive);
+
+ /*
+ * disable dma for now, but remember that we did so because of
+ * a timeout -- we'll reenable after we finish this next request
+ * (or rather the first chunk of it) in pio.
+ */
+ drive->retry_pio++;
+ drive->state = DMA_PIO_RETRY;
+ (void) hwif->ide_dma_off_quietly(drive);
+
+ /*
+ * un-busy drive etc (hwgroup->busy is cleared on return) and
+ * make sure request is sane
+ */
+ rq = HWGROUP(drive)->rq;
+ HWGROUP(drive)->rq = NULL;
+
+ rq->errors = 0;
+ rq->sector = rq->bh->b_rsector;
+ rq->current_nr_sectors = rq->bh->b_size >> 9;
+ rq->hard_cur_sectors = rq->current_nr_sectors;
+ rq->buffer = rq->bh->b_data;
+}
+
+EXPORT_SYMBOL(ide_dma_timeout_retry);
+
+/**
+ * ide_timer_expiry - handle lack of an IDE interrupt
+ * @data: timer callback magic (hwgroup)
+ *
+ * An IDE command has timed out before the expected drive return
+ * occurred. At this point we attempt to clean up the current
+ * mess. If the current handler includes an expiry handler then
+ * we invoke the expiry handler, and providing it is happy the
+ * work is done. If that fails we apply generic recovery rules
+ * invoking the handler and checking the drive DMA status. We
+ * have an excessively incestuous relationship with the DMA
+ * logic that wants cleaning up.
+ */
+
+void ide_timer_expiry (unsigned long data)
+{
+ ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
+ ide_handler_t *handler;
+ ide_expiry_t *expiry;
+ unsigned long flags;
+ unsigned long wait;
+
+ spin_lock_irqsave(&io_request_lock, flags);
+ del_timer(&hwgroup->timer);
+
+ if ((handler = hwgroup->handler) == NULL) {
+ /*
+ * Either a marginal timeout occurred
+ * (got the interrupt just as timer expired),
+ * or we were "sleeping" to give other devices a chance.
+ * Either way, we don't really want to complain about anything.
+ */
+ if (hwgroup->sleeping) {
+ hwgroup->sleeping = 0;
+ hwgroup->busy = 0;
+ }
+ } else {
+ ide_drive_t *drive = hwgroup->drive;
+ if (!drive) {
+ printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
+ hwgroup->handler = NULL;
+ } else {
+ ide_hwif_t *hwif;
+ ide_startstop_t startstop = ide_stopped;
+ if (!hwgroup->busy) {
+ hwgroup->busy = 1; /* paranoia */
+ printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
+ }
+ if ((expiry = hwgroup->expiry) != NULL) {
+ /* continue */
+ if ((wait = expiry(drive)) != 0) {
+ /* reset timer */
+ hwgroup->timer.expires = jiffies + wait;
+ add_timer(&hwgroup->timer);
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ return;
+ }
+ }
+ hwgroup->handler = NULL;
+ /*
+ * We need to simulate a real interrupt when invoking
+ * the handler() function, which means we need to
+ * globally mask the specific IRQ:
+ */
+ spin_unlock(&io_request_lock);
+ hwif = HWIF(drive);
+#if DISABLE_IRQ_NOSYNC
+ disable_irq_nosync(hwif->irq);
+#else
+ /* disable_irq_nosync ?? */
+ disable_irq(hwif->irq);
+#endif /* DISABLE_IRQ_NOSYNC */
+
+ /* local CPU only,
+ * as if we were handling an interrupt */
+ local_irq_disable();
+ if (hwgroup->poll_timeout != 0) {
+ startstop = handler(drive);
+ } else if (drive_is_ready(drive)) {
+ if (drive->waiting_for_dma)
+ (void) hwgroup->hwif->ide_dma_lostirq(drive);
+ (void)ide_ack_intr(hwif);
+ printk(KERN_ERR "%s: lost interrupt\n", drive->name);
+ startstop = handler(drive);
+ } else {
+ if (drive->waiting_for_dma) {
+ startstop = ide_stopped;
+ ide_dma_timeout_retry(drive);
+ } else {
+ startstop = DRIVER(drive)->error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
+ }
+ }
+ set_recovery_timer(hwif);
+ drive->service_time = jiffies - drive->service_start;
+ enable_irq(hwif->irq);
+ spin_lock_irq(&io_request_lock);
+ if (startstop == ide_stopped)
+ hwgroup->busy = 0;
+ }
+ }
+ ide_do_request(hwgroup, IDE_NO_IRQ);
+ spin_unlock_irqrestore(&io_request_lock, flags);
+}
+
+EXPORT_SYMBOL(ide_timer_expiry);
+
+/**
+ * unexpected_intr - handle an unexpected IDE interrupt
+ * @irq: interrupt line
+ * @hwgroup: hwgroup being processed
+ *
+ * There's nothing really useful we can do with an unexpected interrupt,
+ * other than reading the status register (to clear it), and logging it.
+ * There should be no way that an irq can happen before we're ready for it,
+ * so we needn't worry much about losing an "important" interrupt here.
+ *
+ * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
+ * the drive enters "idle", "standby", or "sleep" mode, so if the status
+ * looks "good", we just ignore the interrupt completely.
+ *
+ * This routine assumes __cli() is in effect when called.
+ *
+ * If an unexpected interrupt happens on irq15 while we are handling irq14
+ * and if the two interfaces are "serialized" (CMD640), then it looks like
+ * we could screw up by interfering with a new request being set up for
+ * irq15.
+ *
+ * In reality, this is a non-issue. The new command is not sent unless
+ * the drive is ready to accept one, in which case we know the drive is
+ * not trying to interrupt us. And ide_set_handler() is always invoked
+ * before completing the issuance of any new drive command, so we will not
+ * be accidentally invoked as a result of any valid command completion
+ * interrupt.
+ *
+ * Note that we must walk the entire hwgroup here. We know which hwif
+ * is doing the current command, but we don't know which hwif burped
+ * mysteriously.
+ */
+
+static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
+{
+ u8 stat;
+ ide_hwif_t *hwif = hwgroup->hwif;
+
+ /*
+ * handle the unexpected interrupt
+ */
+ do {
+ if (hwif->irq == irq) {
+ stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
+ if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
+ /* Try to not flood the console with msgs */
+ static unsigned long last_msgtime, count;
+ ++count;
+ if (time_after(jiffies, last_msgtime + HZ)) {
+ last_msgtime = jiffies;
+ printk(KERN_ERR "%s%s: unexpected interrupt, "
+ "status=0x%02x, count=%ld\n",
+ hwif->name,
+ (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
+ }
+ }
+ }
+ } while ((hwif = hwif->next) != hwgroup->hwif);
+}
+
+/**
+ * ide_intr - default IDE interrupt handler
+ * @irq: interrupt number
+ * @dev_id: hwif group
+ * @regs: unused weirdness from the kernel irq layer
+ *
+ * This is the default IRQ handler for the IDE layer. You should
+ * not need to override it. If you do be aware it is subtle in
+ * places
+ *
+ * hwgroup->hwif is the interface in the group currently performing
+ * a command. hwgroup->drive is the drive and hwgroup->handler is
+ * the IRQ handler to call. As we issue a command the handlers
+ * step through multiple states, reassigning the handler to the
+ * next step in the process. Unlike a smart SCSI controller IDE
+ * expects the main processor to sequence the various transfer
+ * stages. We also manage a poll timer to catch up with most
+ * timeout situations. There are still a few where the handlers
+ * don't ever decide to give up.
+ *
+ * The handler eventually returns ide_stopped to indicate the
+ * request completed. At this point we issue the next request
+ * on the hwgroup and the process begins again.
+ */
+
+void ide_intr (int irq, void *dev_id, struct pt_regs *regs)
+{
+ unsigned long flags;
+ ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
+ ide_hwif_t *hwif;
+ ide_drive_t *drive;
+ ide_handler_t *handler;
+ ide_startstop_t startstop;
+
+ spin_lock_irqsave(&io_request_lock, flags);
+ hwif = hwgroup->hwif;
+
+ if (!ide_ack_intr(hwif)) {
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ return;
+ }
+
+ if ((handler = hwgroup->handler) == NULL ||
+ hwgroup->poll_timeout != 0) {
+ /*
+ * Not expecting an interrupt from this drive.
+ * That means this could be:
+ * (1) an interrupt from another PCI device
+ * sharing the same PCI INT# as us.
+ * or (2) a drive just entered sleep or standby mode,
+ * and is interrupting to let us know.
+ * or (3) a spurious interrupt of unknown origin.
+ *
+ * For PCI, we cannot tell the difference,
+ * so in that case we just ignore it and hope it goes away.
+ */
+#ifdef CONFIG_BLK_DEV_IDEPCI
+ if (hwif->pci_dev && !hwif->pci_dev->vendor)
+#endif /* CONFIG_BLK_DEV_IDEPCI */
+ {
+ /*
+ * Probably not a shared PCI interrupt,
+ * so we can safely try to do something about it:
+ */
+ unexpected_intr(irq, hwgroup);
+#ifdef CONFIG_BLK_DEV_IDEPCI
+ } else {
+ /*
+ * Whack the status register, just in case
+ * we have a leftover pending IRQ.
+ */
+ (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
+#endif /* CONFIG_BLK_DEV_IDEPCI */
+ }
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ return;
+ }
+ drive = hwgroup->drive;
+ if (!drive) {
+ /*
+ * This should NEVER happen, and there isn't much
+ * we could do about it here.
+ */
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ return;
+ }
+ if (!drive_is_ready(drive)) {
+ /*
+ * This happens regularly when we share a PCI IRQ with
+ * another device. Unfortunately, it can also happen
+ * with some buggy drives that trigger the IRQ before
+ * their status register is up to date. Hopefully we have
+ * enough advance overhead that the latter isn't a problem.
+ */
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ return;
+ }
+ if (!hwgroup->busy) {
+ hwgroup->busy = 1; /* paranoia */
+ printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
+ }
+ hwgroup->handler = NULL;
+ del_timer(&hwgroup->timer);
+ spin_unlock(&io_request_lock);
+
+ if (drive->unmask)
+ local_irq_enable();
+
+ /* service this interrupt, may set handler for next interrupt */
+ startstop = handler(drive);
+ spin_lock_irq(&io_request_lock);
+
+ /*
+ * Note that handler() may have set things up for another
+ * interrupt to occur soon, but it cannot happen until
+ * we exit from this routine, because it will be the
+ * same irq as is currently being serviced here, and Linux
+ * won't allow another of the same (on any CPU) until we return.
+ */
+ set_recovery_timer(HWIF(drive));
+ drive->service_time = jiffies - drive->service_start;
+ if (startstop == ide_stopped) {
+ if (hwgroup->handler == NULL) { /* paranoia */
+ hwgroup->busy = 0;
+ ide_do_request(hwgroup, hwif->irq);
+ } else {
+ printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
+ "on exit\n", drive->name);
+ }
+ }
+ spin_unlock_irqrestore(&io_request_lock, flags);
+}
+
+EXPORT_SYMBOL(ide_intr);
+
+/*
+ * get_info_ptr() returns the (ide_drive_t *) for a given device number.
+ * It returns NULL if the given device number does not match any present drives.
+ */
+ide_drive_t *get_info_ptr (kdev_t i_rdev)
+{
+ int major = MAJOR(i_rdev);
+ unsigned int h;
+
+ for (h = 0; h < MAX_HWIFS; ++h) {
+ ide_hwif_t *hwif = &ide_hwifs[h];
+ if (hwif->present && major == hwif->major) {
+ unsigned unit = DEVICE_NR(i_rdev);
+ if (unit < MAX_DRIVES) {
+ ide_drive_t *drive = &hwif->drives[unit];
+ if (drive->present)
+ return drive;
+ }
+ break;
+ }
+ }
+ return NULL;
+}
+
+EXPORT_SYMBOL(get_info_ptr);
+
+/**
+ * ide_init_drive_cmd - initialize a drive command request
+ * @rq: request object
+ *
+ * Initialize a request before we fill it in and send it down to
+ * ide_do_drive_cmd. Commands must be set up by this function. Right
+ * now it doesn't do a lot, but if that changes abusers will have a
+ * nasty suprise.
+ */
+
+void ide_init_drive_cmd (struct request *rq)
+{
+ memset(rq, 0, sizeof(*rq));
+ rq->cmd = IDE_DRIVE_CMD;
+}
+
+EXPORT_SYMBOL(ide_init_drive_cmd);
+
+/**
+ * ide_do_drive_cmd - issue IDE special command
+ * @drive: device to issue command
+ * @rq: request to issue
+ * @action: action for processing
+ *
+ * This function issues a special IDE device request
+ * onto the request queue.
+ *
+ * If action is ide_wait, then the rq is queued at the end of the
+ * request queue, and the function sleeps until it has been processed.
+ * This is for use when invoked from an ioctl handler.
+ *
+ * If action is ide_preempt, then the rq is queued at the head of
+ * the request queue, displacing the currently-being-processed
+ * request and this function returns immediately without waiting
+ * for the new rq to be completed. This is VERY DANGEROUS, and is
+ * intended for careful use by the ATAPI tape/cdrom driver code.
+ *
+ * If action is ide_next, then the rq is queued immediately after
+ * the currently-being-processed-request (if any), and the function
+ * returns without waiting for the new rq to be completed. As above,
+ * This is VERY DANGEROUS, and is intended for careful use by the
+ * ATAPI tape/cdrom driver code.
+ *
+ * If action is ide_end, then the rq is queued at the end of the
+ * request queue, and the function returns immediately without waiting
+ * for the new rq to be completed. This is again intended for careful
+ * use by the ATAPI tape/cdrom driver code.
+ */
+
+int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
+{
+ unsigned long flags;
+ ide_hwgroup_t *hwgroup = HWGROUP(drive);
+ unsigned int major = HWIF(drive)->major;
+ request_queue_t *q = &drive->queue;
+ struct list_head *queue_head = &q->queue_head;
+ DECLARE_COMPLETION(wait);
+
+#ifdef CONFIG_BLK_DEV_PDC4030
+ if (HWIF(drive)->chipset == ide_pdc4030 && rq->buffer != NULL)
+ return -ENOSYS; /* special drive cmds not supported */
+#endif
+ rq->errors = 0;
+ rq->rq_status = RQ_ACTIVE;
+ rq->rq_dev = MKDEV(major,(drive->select.b.unit)<<PARTN_BITS);
+ if (action == ide_wait)
+ rq->waiting = &wait;
+ spin_lock_irqsave(&io_request_lock, flags);
+ if (blk_queue_empty(q) || action == ide_preempt) {
+ if (action == ide_preempt)
+ hwgroup->rq = NULL;
+ } else {
+ if (action == ide_wait || action == ide_end) {
+ queue_head = queue_head->prev;
+ } else
+ queue_head = queue_head->next;
+ }
+ list_add(&rq->queue, queue_head);
+ ide_do_request(hwgroup, IDE_NO_IRQ);
+ spin_unlock_irqrestore(&io_request_lock, flags);
+ if (action == ide_wait) {
+ /* wait for it to be serviced */
+ wait_for_completion(&wait);
+ /* return -EIO if errors */
+ return rq->errors ? -EIO : 0;
+ }
+ return 0;
+
+}
+
+EXPORT_SYMBOL(ide_do_drive_cmd);
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)