patch-2.1.124 linux/arch/ppc/8xx_io/fec.c

Next file: linux/arch/ppc/8xx_io/uart.c
Previous file: linux/arch/ppc/8xx_io/enet.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.1.123/linux/arch/ppc/8xx_io/fec.c linux/arch/ppc/8xx_io/fec.c
@@ -0,0 +1,985 @@
+/*
+ * Fast Ethernet Controller (FECC) driver for Motorola MPC8xx.
+ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is specific to the FADS implementation,
+ * since the board contains control registers external to the processor
+ * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual
+ * describes connections using the internal parallel port I/O, which
+ * is basically all of Port D.
+ *
+ * Right now, I am very watseful with the buffers.  I allocate memory
+ * pages and then divide them into 2K frame buffers.  This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/malloc.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+
+#include <asm/8xx_immap.h>
+#include <asm/pgtable.h>
+#include <asm/fads.h>
+#include <asm/irq.h>
+#include <asm/bitops.h>
+#include <asm/uaccess.h>
+#include "commproc.h"
+
+/* The number of Tx and Rx buffers.  These are allocated from the page
+ * pool.  The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter.  We just use
+ * the skbuffer directly.
+ */
+#if 1
+#define FEC_ENET_RX_PAGES	4
+#define FEC_ENET_RX_FRSIZE	2048
+#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define TX_RING_SIZE		8	/* Must be power of two */
+#define TX_RING_MOD_MASK	7	/*   for this to work */
+#else
+#define FEC_ENET_RX_PAGES	16
+#define FEC_ENET_RX_FRSIZE	2048
+#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define TX_RING_SIZE		16	/* Must be power of two */
+#define TX_RING_MOD_MASK	15	/*   for this to work */
+#endif
+
+/* Interrupt events/masks.
+*/
+#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
+#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
+#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
+#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
+#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
+#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
+#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
+#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
+#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
+#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
+
+/* The FEC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE		1518
+#define PKT_MINBUF_SIZE		64
+#define PKT_MAXBLR_SIZE		1520
+
+/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors.  The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller.  The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions.  The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fec_enet_private {
+	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
+	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
+	ushort	skb_cur;
+	ushort	skb_dirty;
+
+	/* CPM dual port RAM relative addresses.
+	*/
+	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
+	cbd_t	*tx_bd_base;
+	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
+	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
+	scc_t	*sccp;
+	struct	net_device_stats stats;
+	char	tx_full;
+	unsigned long lock;
+};
+
+static int fec_enet_open(struct device *dev);
+static int fec_enet_start_xmit(struct sk_buff *skb, struct device *dev);
+static int fec_enet_rx(struct device *dev);
+static void fec_enet_mii(struct device *dev);
+static	void fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static int fec_enet_close(struct device *dev);
+static struct net_device_stats *fec_enet_get_stats(struct device *dev);
+static void set_multicast_list(struct device *dev);
+
+static	ushort	my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };
+
+/* MII processing.  We keep this as simple as possible.  Requests are
+ * placed on the list (if there is room).  When the request is finished
+ * by the MII, an optional function may be called.
+ */
+typedef struct mii_list {
+	uint	mii_regval;
+	void	(*mii_func)(uint val);
+	struct	mii_list *mii_next;
+} mii_list_t;
+
+#define		NMII	10
+mii_list_t	mii_cmds[NMII];
+mii_list_t	*mii_free;
+mii_list_t	*mii_head;
+mii_list_t	*mii_tail;
+
+static int	mii_queue(int request, void (*func)(int));
+
+/* Make MII read/write commands for the FEC.
+*/
+#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
+#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
+						(VAL & 0xffff))
+
+static int
+fec_enet_open(struct device *dev)
+{
+
+	/* I should reset the ring buffers here, but I don't yet know
+	 * a simple way to do that.
+	 */
+
+	dev->tbusy = 0;
+	dev->interrupt = 0;
+	dev->start = 1;
+
+	return 0;					/* Always succeed */
+}
+
+static int
+fec_enet_start_xmit(struct sk_buff *skb, struct device *dev)
+{
+	struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
+	volatile cbd_t	*bdp;
+	unsigned long flags;
+
+	/* Transmitter timeout, serious problems. */
+	if (dev->tbusy) {
+		int tickssofar = jiffies - dev->trans_start;
+		if (tickssofar < 20)
+			return 1;
+		printk("%s: transmit timed out.\n", dev->name);
+		fep->stats.tx_errors++;
+#ifndef final_version
+		{
+			int	i;
+			cbd_t	*bdp;
+			printk(" Ring data dump: cur_tx %x%s cur_rx %x.\n",
+				   fep->cur_tx, fep->tx_full ? " (full)" : "",
+				   fep->cur_rx);
+			bdp = fep->tx_bd_base;
+			for (i = 0 ; i < TX_RING_SIZE; i++)
+				printk("%04x %04x %08x\n",
+					bdp->cbd_sc,
+					bdp->cbd_datlen,
+					bdp->cbd_bufaddr);
+			bdp = fep->rx_bd_base;
+			for (i = 0 ; i < RX_RING_SIZE; i++)
+				printk("%04x %04x %08x\n",
+					bdp->cbd_sc,
+					bdp->cbd_datlen,
+					bdp->cbd_bufaddr);
+		}
+#endif
+
+		dev->tbusy=0;
+		dev->trans_start = jiffies;
+
+		return 0;
+	}
+
+	/* Block a timer-based transmit from overlapping.  This could better be
+	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
+	if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
+		printk("%s: Transmitter access conflict.\n", dev->name);
+		return 1;
+	}
+
+	if (test_and_set_bit(0, (void*)&fep->lock) != 0) {
+		printk("%s: tx queue lock!.\n", dev->name);
+		/* don't clear dev->tbusy flag. */
+		return 1;
+	}
+
+	/* Fill in a Tx ring entry */
+	bdp = fep->cur_tx;
+
+#ifndef final_version
+	if (bdp->cbd_sc & BD_ENET_TX_READY) {
+		/* Ooops.  All transmit buffers are full.  Bail out.
+		 * This should not happen, since dev->tbusy should be set.
+		 */
+		printk("%s: tx queue full!.\n", dev->name);
+		fep->lock = 0;
+		return 1;
+	}
+#endif
+
+	/* Clear all of the status flags.
+	 */
+	bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+	/* Set buffer length and buffer pointer.
+	*/
+	bdp->cbd_bufaddr = __pa(skb->data);
+	bdp->cbd_datlen = skb->len;
+
+	/* Save skb pointer.
+	*/
+	fep->tx_skbuff[fep->skb_cur] = skb;
+
+	fep->stats.tx_bytes += skb->len;
+	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
+	
+	/* Push the data cache so the CPM does not get stale memory
+	 * data.
+	 */
+	/*flush_dcache_range(skb->data, skb->data + skb->len);*/
+
+	/* Send it on its way.  Tell CPM its ready, interrupt when done,
+	 * its the last BD of the frame, and to put the CRC on the end.
+	 */
+	save_flags(flags);
+	cli();
+
+	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+	dev->trans_start = jiffies;
+	(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_x_des_active = 0x01000000;
+
+	/* If this was the last BD in the ring, start at the beginning again.
+	*/
+	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+		bdp = fep->tx_bd_base;
+	else
+		bdp++;
+
+	fep->lock = 0;
+	if (bdp->cbd_sc & BD_ENET_TX_READY)
+		fep->tx_full = 1;
+	else
+		dev->tbusy=0;
+	restore_flags(flags);
+
+	fep->cur_tx = (cbd_t *)bdp;
+
+	return 0;
+}
+
+/* The interrupt handler.
+ * This is called from the MPC core interrupt.
+ */
+static	void
+fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+	struct	device *dev = dev_id;
+	struct	fec_enet_private *fep;
+	volatile cbd_t	*bdp;
+	volatile fec_t	*ep;
+	uint	int_events;
+	int c=0;
+
+	fep = (struct fec_enet_private *)dev->priv;
+	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+	if (dev->interrupt)
+		printk("%s: Re-entering the interrupt handler.\n", dev->name);
+	dev->interrupt = 1;
+
+	/* Get the interrupt events that caused us to be here.
+	*/
+	while ((int_events = ep->fec_ievent) != 0) {
+	ep->fec_ievent = int_events;
+	if ((int_events &
+		(FEC_ENET_HBERR | FEC_ENET_BABR |
+			FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
+				printk("FEC ERROR %x\n", int_events);
+
+	/* Handle receive event in its own function.
+	*/
+	if (int_events & (FEC_ENET_RXF | FEC_ENET_RXB))
+		fec_enet_rx(dev_id);
+
+	/* Transmit OK, or non-fatal error.  Update the buffer descriptors.
+	 * FEC handles all errors, we just discover them as part of the
+	 * transmit process.
+	 */
+	if (int_events & (FEC_ENET_TXF | FEC_ENET_TXB)) {
+	    bdp = fep->dirty_tx;
+	    while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
+#if 1
+		if (bdp==fep->cur_tx)
+		    break;
+#endif
+		if (++c>1) {/*we go here when an it has been lost*/};
+
+
+		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */
+		    fep->stats.tx_heartbeat_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */
+		    fep->stats.tx_window_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */
+		    fep->stats.tx_aborted_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */
+		    fep->stats.tx_fifo_errors++;
+		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */
+		    fep->stats.tx_carrier_errors++;
+
+		fep->stats.tx_errors++;
+	    
+		fep->stats.tx_packets++;
+		
+#ifndef final_version
+		if (bdp->cbd_sc & BD_ENET_TX_READY)
+		    printk("HEY! Enet xmit interrupt and TX_READY.\n");
+#endif
+		/* Deferred means some collisions occurred during transmit,
+		 * but we eventually sent the packet OK.
+		 */
+		if (bdp->cbd_sc & BD_ENET_TX_DEF)
+		    fep->stats.collisions++;
+	    
+		/* Free the sk buffer associated with this last transmit.
+		 */
+		dev_kfree_skb(fep->tx_skbuff[fep->skb_dirty]/*, FREE_WRITE*/);
+		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
+	    
+		/* Update pointer to next buffer descriptor to be transmitted.
+		 */
+		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+		    bdp = fep->tx_bd_base;
+		else
+		    bdp++;
+	    
+		/* Since we have freed up a buffer, the ring is no longer
+		 * full.
+		 */
+		if (fep->tx_full && dev->tbusy) {
+		    fep->tx_full = 0;
+		    dev->tbusy = 0;
+		    mark_bh(NET_BH);
+		}
+
+		fep->dirty_tx = (cbd_t *)bdp;
+#if 0
+		if (bdp==fep->cur_tx)
+		    break;
+#endif
+	    }/*while (bdp->cbd_sc&BD_ENET_TX_READY)==0*/
+	 } /* if tx events */
+
+	if (int_events & FEC_ENET_MII)
+		fec_enet_mii(dev_id);
+	
+	} /* while any events */
+
+	dev->interrupt = 0;
+
+	return;
+}
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static int
+fec_enet_rx(struct device *dev)
+{
+	struct	fec_enet_private *fep;
+	volatile cbd_t *bdp;
+	struct	sk_buff	*skb;
+	ushort	pkt_len;
+	volatile fec_t	*ep;
+
+	fep = (struct fec_enet_private *)dev->priv;
+	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+
+	/* First, grab all of the stats for the incoming packet.
+	 * These get messed up if we get called due to a busy condition.
+	 */
+	bdp = fep->cur_rx;
+
+for (;;) {
+	if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
+		break;
+		
+#ifndef final_version
+	/* Since we have allocated space to hold a complete frame,
+	 * the last indicator should be set.
+	 */
+	if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
+		printk("FEC ENET: rcv is not +last\n");
+#endif
+
+	/* Frame too long or too short.
+	*/
+	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
+		fep->stats.rx_length_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
+		fep->stats.rx_frame_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
+		fep->stats.rx_crc_errors++;
+	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
+		fep->stats.rx_crc_errors++;
+
+	/* Report late collisions as a frame error.
+	 * On this error, the BD is closed, but we don't know what we
+	 * have in the buffer.  So, just drop this frame on the floor.
+	 */
+	if (bdp->cbd_sc & BD_ENET_RX_CL) {
+		fep->stats.rx_frame_errors++;
+	}
+	else {
+
+		/* Process the incoming frame.
+		*/
+		fep->stats.rx_packets++;
+		pkt_len = bdp->cbd_datlen;
+		fep->stats.rx_bytes += pkt_len;
+
+		/* This does 16 byte alignment, exactly what we need.
+		*/
+		skb = dev_alloc_skb(pkt_len);
+
+		if (skb == NULL) {
+			printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+			fep->stats.rx_dropped++;
+		}
+		else {
+			skb->dev = dev;
+			skb_put(skb,pkt_len);	/* Make room */
+			eth_copy_and_sum(skb,
+				(unsigned char *)__va(bdp->cbd_bufaddr),
+				pkt_len, 0);
+			skb->protocol=eth_type_trans(skb,dev);
+			netif_rx(skb);
+		}
+	}
+
+	/* Clear the status flags for this buffer.
+	*/
+	bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+	/* Mark the buffer empty.
+	*/
+	bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+	/* Update BD pointer to next entry.
+	*/
+	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+		bdp = fep->rx_bd_base;
+	else
+		bdp++;
+	
+#if 1
+	/* Doing this here will keep the FEC running while we process
+	 * incoming frames.  On a heavily loaded network, we should be
+	 * able to keep up at the expense of system resources.
+	 */
+	ep->fec_r_des_active = 0x01000000;
+#endif
+   }
+	fep->cur_rx = (cbd_t *)bdp;
+
+#if 0
+	/* Doing this here will allow us to process all frames in the
+	 * ring before the FEC is allowed to put more there.  On a heavily
+	 * loaded network, some frames may be lost.  Unfortunately, this
+	 * increases the interrupt overhead since we can potentially work
+	 * our way back to the interrupt return only to come right back
+	 * here.
+	 */
+	ep->fec_r_des_active = 0x01000000;
+#endif
+
+	return 0;
+}
+
+static void
+fec_enet_mii(struct device *dev)
+{
+	struct	fec_enet_private *fep;
+	volatile fec_t	*ep;
+	mii_list_t	*mip;
+	uint		mii_reg;
+
+	fep = (struct fec_enet_private *)dev->priv;
+	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+	mii_reg = ep->fec_mii_data;
+	
+	if ((mip = mii_head) == NULL) {
+		printk("MII and no head!\n");
+		return;
+	}
+
+	if (mip->mii_func != NULL)
+		(*(mip->mii_func))(mii_reg);
+
+	mii_head = mip->mii_next;
+	mip->mii_next = mii_free;
+	mii_free = mip;
+
+	if ((mip = mii_head) != NULL)
+		ep->fec_mii_data = mip->mii_regval;
+}
+
+static int
+mii_queue(int regval, void (*func)(int))
+{
+	unsigned long	flags;
+	mii_list_t	*mip;
+	int		retval;
+
+	retval = 0;
+
+	save_flags(flags);
+	cli();
+
+	if ((mip = mii_free) != NULL) {
+		mii_free = mip->mii_next;
+		mip->mii_regval = regval;
+		mip->mii_func = func;
+		mip->mii_next = NULL;
+		if (mii_head) {
+			mii_tail->mii_next = mip;
+			mii_tail = mip;
+		}
+		else {
+			mii_head = mii_tail = mip;
+			(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
+		}
+	}
+	else {
+		retval = 1;
+	}
+
+	restore_flags(flags);
+
+	return(retval);
+}
+
+static void
+mii_status(uint mii_reg)
+{
+	if (((mii_reg >> 18) & 0x1f) == 1) {
+		/* status register.
+		*/
+		printk("fec: ");
+		if (mii_reg & 0x0004)
+			printk("link up");
+		else
+			printk("link down");
+
+		if (mii_reg & 0x0010)
+			printk(",remote fault");
+		if (mii_reg & 0x0020)
+			printk(",auto complete");
+		printk("\n");
+	}
+	if (((mii_reg >> 18) & 0x1f) == 0x14) {
+		/* Extended chip status register.
+		*/
+		printk("fec: ");
+		if (mii_reg & 0x0800)
+			printk("100 Mbps");
+		else
+			printk("10 Mbps");
+
+		if (mii_reg & 0x1000)
+			printk(", Full-Duplex\n");
+		else
+			printk(", Half-Duplex\n");
+	}
+}
+
+static	void
+mii_startup_cmds(void)
+{
+
+	/* Read status registers to clear any pending interrupt.
+	*/
+	mii_queue(mk_mii_read(1), mii_status);
+	mii_queue(mk_mii_read(18), mii_status);
+
+	/* Read extended chip status register.
+	*/
+	mii_queue(mk_mii_read(0x14), mii_status);
+
+	/* Enable Link status change interrupts.
+	mii_queue(mk_mii_write(0x11, 0x0002), NULL);
+	*/
+}
+
+/* This supports the mii_link interrupt below.
+ * We should get called three times.  Once for register 1, once for
+ * register 18, and once for register 20.
+ */
+static	uint mii_saved_reg1;
+
+static void
+mii_relink(uint mii_reg)
+{
+	if (((mii_reg >> 18) & 0x1f) == 1) {
+		/* Just save the status register and get out.
+		*/
+		mii_saved_reg1 = mii_reg;
+		return;
+	}
+	if (((mii_reg >> 18) & 0x1f) == 18) {
+		/* Not much here, but has to be read to clear the
+		 * interrupt condition.
+		 */
+		if ((mii_reg & 0x8000) == 0)
+			printk("fec: re-link and no IRQ?\n");
+		if ((mii_reg & 0x4000) == 0)
+			printk("fec: no PHY power?\n");
+	}
+	if (((mii_reg >> 18) & 0x1f) == 20) {
+		/* Extended chip status register.
+		 * OK, now we have it all, so figure out what is going on.
+		 */
+		printk("fec: ");
+		if (mii_saved_reg1 & 0x0004)
+			printk("link up");
+		else
+			printk("link down");
+
+		if (mii_saved_reg1 & 0x0010)
+			printk(", remote fault");
+		if (mii_saved_reg1 & 0x0020)
+			printk(", auto complete");
+
+		if (mii_reg & 0x0800)
+			printk(", 100 Mbps");
+		else
+			printk(", 10 Mbps");
+
+		if (mii_reg & 0x1000)
+			printk(", Full-Duplex\n");
+		else
+			printk(", Half-Duplex\n");
+	}
+}
+
+/* This interrupt occurs when the LTX970 detects a link change.
+*/
+static	void
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+	struct	device *dev = dev_id;
+	struct	fec_enet_private *fep;
+	volatile fec_t	*ep;
+
+	fep = (struct fec_enet_private *)dev->priv;
+	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+
+	/* We need to sequentially read registers 1 and 18 to clear
+	 * the interrupt.  We don't need to do that here because this
+	 * is an edge triggered interrupt that has already been acknowledged
+	 * by the top level handler.  We also read the extended status
+	 * register 20.  We just queue the commands and let them happen
+	 * as part of the "normal" processing.
+	 */
+	mii_queue(mk_mii_read(1), mii_relink);
+	mii_queue(mk_mii_read(18), mii_relink);
+	mii_queue(mk_mii_read(20), mii_relink);
+}
+
+static int
+fec_enet_close(struct device *dev)
+{
+	/* Don't know what to do yet.
+	*/
+
+	return 0;
+}
+
+static struct net_device_stats *fec_enet_get_stats(struct device *dev)
+{
+	struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
+
+	return &fep->stats;
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering.  Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not.  I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+
+static void set_multicast_list(struct device *dev)
+{
+	struct	fec_enet_private *fep;
+	struct	dev_mc_list *dmi;
+	u_char	*mcptr, *tdptr;
+	volatile fec_t *ep;
+	int	i, j;
+
+	fep = (struct fec_enet_private *)dev->priv;
+	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+
+	if (dev->flags&IFF_PROMISC) {
+	  
+		/* Log any net taps. */
+		printk("%s: Promiscuous mode enabled.\n", dev->name);
+		ep->fec_r_cntrl |= 0x0008;
+	} else {
+
+		ep->fec_r_cntrl &= ~0x0008;
+
+		if (dev->flags & IFF_ALLMULTI) {
+			/* Catch all multicast addresses, so set the
+			 * filter to all 1's.
+			 */
+			ep->fec_hash_table_high = 0xffffffff;
+			ep->fec_hash_table_low = 0xffffffff;
+		}
+#if 0
+		else {
+			/* Clear filter and add the addresses in the list.
+			*/
+			ep->sen_gaddr1 = 0;
+			ep->sen_gaddr2 = 0;
+			ep->sen_gaddr3 = 0;
+			ep->sen_gaddr4 = 0;
+
+			dmi = dev->mc_list;
+
+			for (i=0; i<dev->mc_count; i++) {
+				
+				/* Only support group multicast for now.
+				*/
+				if (!(dmi->dmi_addr[0] & 1))
+					continue;
+
+				/* The address in dmi_addr is LSB first,
+				 * and taddr is MSB first.  We have to
+				 * copy bytes MSB first from dmi_addr.
+				 */
+				mcptr = (u_char *)dmi->dmi_addr + 5;
+				tdptr = (u_char *)&ep->sen_taddrh;
+				for (j=0; j<6; j++)
+					*tdptr++ = *mcptr--;
+
+				/* Ask CPM to run CRC and set bit in
+				 * filter mask.
+				 */
+				cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
+				/* this delay is necessary here -- Cort */
+				udelay(10);
+				while (cpmp->cp_cpcr & CPM_CR_FLG);
+			}
+		}
+#endif
+	}
+}
+
+/* Initialize the FECC Ethernet on 860T.
+ */
+__initfunc(int m8xx_enet_init(void))
+{
+	struct device *dev;
+	struct fec_enet_private *fep;
+	int i, j;
+	unsigned char	*eap;
+	unsigned long	mem_addr;
+	pte_t		*pte;
+	volatile	cbd_t	*bdp;
+	cbd_t		*cbd_base;
+	volatile	immap_t	*immap;
+	volatile	fec_t	*fecp;
+	unsigned char	rtc_save_cfg, rtc_val;
+
+	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
+
+	/* Allocate some private information.
+	*/
+	fep = (struct fec_enet_private *)kmalloc(sizeof(*fep), GFP_KERNEL);
+	__clear_user(fep,sizeof(*fep));
+
+	/* Create an Ethernet device instance.
+	*/
+	dev = init_etherdev(0, 0);
+
+	fecp = &(immap->im_cpm.cp_fec);
+
+	/* Whack a reset.  We should wait for this.
+	*/
+	fecp->fec_ecntrl = 1;
+	udelay(10);
+
+	/* Enable interrupts we wish to service.
+	*/
+	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
+				FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
+
+	/* Clear any outstanding interrupt.
+	*/
+	fecp->fec_ievent = 0xffc0;
+
+	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
+
+	/* Set station address.
+	*/
+	fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
+	fecp->fec_addr_high = my_enet_addr[2];
+
+	eap = (unsigned char *)&my_enet_addr[0];
+	for (i=0; i<6; i++)
+		dev->dev_addr[i] = *eap++;
+
+	/* Reset all multicast.
+	*/
+	fecp->fec_hash_table_high = 0;
+	fecp->fec_hash_table_low = 0;
+
+	/* Set maximum receive buffer size.
+	*/
+	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
+	fecp->fec_r_hash = PKT_MAXBUF_SIZE;
+
+	/* Allocate memory for buffer descriptors.
+	*/
+	if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
+		printk("FECC init error.  Need more space.\n");
+		printk("FECC initialization failed.\n");
+		return 1;
+	}
+	mem_addr = __get_free_page(GFP_KERNEL);
+	cbd_base = (cbd_t *)mem_addr;
+
+	/* Make it uncached.
+	*/
+	pte = va_to_pte(&init_task, (int)mem_addr);
+	pte_val(*pte) |= _PAGE_NO_CACHE;
+	flush_tlb_page(current->mm->mmap, mem_addr);
+
+	/* Set receive and transmit descriptor base.
+	*/
+	fecp->fec_r_des_start = __pa(mem_addr);
+	fep->rx_bd_base = cbd_base;
+	fecp->fec_x_des_start = __pa((unsigned long)(cbd_base + RX_RING_SIZE));
+	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
+
+	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+	fep->cur_rx = fep->rx_bd_base;
+
+	fep->skb_cur = fep->skb_dirty = 0;
+
+	/* Initialize the receive buffer descriptors.
+	*/
+	bdp = fep->rx_bd_base;
+	for (i=0; i<FEC_ENET_RX_PAGES; i++) {
+
+		/* Allocate a page.
+		*/
+		mem_addr = __get_free_page(GFP_KERNEL);
+
+		/* Make it uncached.
+		*/
+		pte = va_to_pte(&init_task, mem_addr);
+		pte_val(*pte) |= _PAGE_NO_CACHE;
+		flush_tlb_page(current->mm->mmap, mem_addr);
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
+			bdp->cbd_sc = BD_ENET_RX_EMPTY;
+			bdp->cbd_bufaddr = __pa(mem_addr);
+			mem_addr += FEC_ENET_RX_FRSIZE;
+			bdp++;
+		}
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* ...and the same for transmmit.
+	*/
+	bdp = fep->tx_bd_base;
+	for (i=0; i<TX_RING_SIZE; i++) {
+
+		/* Initialize the BD for every fragment in the page.
+		*/
+		bdp->cbd_sc = 0;
+		bdp->cbd_bufaddr = 0;
+		bdp++;
+	}
+
+	/* Set the last buffer to wrap.
+	*/
+	bdp--;
+	bdp->cbd_sc |= BD_SC_WRAP;
+
+	/* Enable MII mode, half-duplex until we know better..
+	*/
+	fecp->fec_r_cntrl = 0x0c;
+	fecp->fec_x_cntrl = 0x00;
+
+	/* Enable big endian and don't care about SDMA FC.
+	*/
+	fecp->fec_fun_code = 0x78000000;
+
+	/* Set MII speed (50 MHz core).
+	*/
+	fecp->fec_mii_speed = 0x14;
+
+	/* Configure all of port D for MII.
+	*/
+	immap->im_ioport.iop_pdpar = 0x1fff;
+	immap->im_ioport.iop_pddir = 0x1c58;
+
+	/* Install our interrupt handlers.  The 860T FADS board uses
+	 * IRQ2 for the MII interrupt.
+	 */
+	if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
+		panic("Could not allocate FEC IRQ!");
+	if (request_irq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
+		panic("Could not allocate MII IRQ!");
+
+	dev->base_addr = (unsigned long)fecp;
+	dev->priv = fep;
+	dev->name = "fec";
+
+	/* The FEC Ethernet specific entries in the device structure. */
+	dev->open = fec_enet_open;
+	dev->hard_start_xmit = fec_enet_start_xmit;
+	dev->stop = fec_enet_close;
+	dev->get_stats = fec_enet_get_stats;
+	dev->set_multicast_list = set_multicast_list;
+
+	/* And last, enable the transmit and receive processing.
+	*/
+	fecp->fec_ecntrl = 2;
+	fecp->fec_r_des_active = 0x01000000;
+
+	printk("FEC ENET Version 0.1, ");
+	for (i=0; i<5; i++)
+		printk("%02x:", dev->dev_addr[i]);
+	printk("%02x\n", dev->dev_addr[5]);
+
+	for (i=0; i<NMII-1; i++)
+		mii_cmds[i].mii_next = &mii_cmds[i+1];
+	mii_free = mii_cmds;
+
+	mii_startup_cmds();
+
+	return 0;
+}
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov