Uninline the non-leaf bit search functions.  Saves 9 kbytes from my vmlinux.

And gratuitously s/__inline__/inline/

Signed-off-by: Andrew Morton <akpm@osdl.org>
---

 25-akpm/arch/i386/lib/Makefile    |    5 -
 25-akpm/arch/i386/lib/bitops.c    |   70 +++++++++++++++++++++++++
 25-akpm/include/asm-i386/bitops.h |  104 +++++++++-----------------------------
 3 files changed, 99 insertions(+), 80 deletions(-)

diff -puN include/asm-i386/bitops.h~i386-uninline-bitops include/asm-i386/bitops.h
--- 25/include/asm-i386/bitops.h~i386-uninline-bitops	2004-06-03 21:15:16.703893400 -0700
+++ 25-akpm/include/asm-i386/bitops.h	2004-06-03 21:15:16.710892336 -0700
@@ -34,7 +34,7 @@
  * Note that @nr may be almost arbitrarily large; this function is not
  * restricted to acting on a single-word quantity.
  */
-static __inline__ void set_bit(int nr, volatile unsigned long * addr)
+static inline void set_bit(int nr, volatile unsigned long * addr)
 {
 	__asm__ __volatile__( LOCK_PREFIX
 		"btsl %1,%0"
@@ -51,7 +51,7 @@ static __inline__ void set_bit(int nr, v
  * If it's called on the same region of memory simultaneously, the effect
  * may be that only one operation succeeds.
  */
-static __inline__ void __set_bit(int nr, volatile unsigned long * addr)
+static inline void __set_bit(int nr, volatile unsigned long * addr)
 {
 	__asm__(
 		"btsl %1,%0"
@@ -69,7 +69,7 @@ static __inline__ void __set_bit(int nr,
  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
  * in order to ensure changes are visible on other processors.
  */
-static __inline__ void clear_bit(int nr, volatile unsigned long * addr)
+static inline void clear_bit(int nr, volatile unsigned long * addr)
 {
 	__asm__ __volatile__( LOCK_PREFIX
 		"btrl %1,%0"
@@ -77,7 +77,7 @@ static __inline__ void clear_bit(int nr,
 		:"Ir" (nr));
 }
 
-static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
+static inline void __clear_bit(int nr, volatile unsigned long * addr)
 {
 	__asm__ __volatile__(
 		"btrl %1,%0"
@@ -96,7 +96,7 @@ static __inline__ void __clear_bit(int n
  * If it's called on the same region of memory simultaneously, the effect
  * may be that only one operation succeeds.
  */
-static __inline__ void __change_bit(int nr, volatile unsigned long * addr)
+static inline void __change_bit(int nr, volatile unsigned long * addr)
 {
 	__asm__ __volatile__(
 		"btcl %1,%0"
@@ -113,7 +113,7 @@ static __inline__ void __change_bit(int 
  * Note that @nr may be almost arbitrarily large; this function is not
  * restricted to acting on a single-word quantity.
  */
-static __inline__ void change_bit(int nr, volatile unsigned long * addr)
+static inline void change_bit(int nr, volatile unsigned long * addr)
 {
 	__asm__ __volatile__( LOCK_PREFIX
 		"btcl %1,%0"
@@ -129,7 +129,7 @@ static __inline__ void change_bit(int nr
  * This operation is atomic and cannot be reordered.  
  * It also implies a memory barrier.
  */
-static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr)
+static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
 {
 	int oldbit;
 
@@ -149,7 +149,7 @@ static __inline__ int test_and_set_bit(i
  * If two examples of this operation race, one can appear to succeed
  * but actually fail.  You must protect multiple accesses with a lock.
  */
-static __inline__ int __test_and_set_bit(int nr, volatile unsigned long * addr)
+static inline int __test_and_set_bit(int nr, volatile unsigned long * addr)
 {
 	int oldbit;
 
@@ -168,7 +168,7 @@ static __inline__ int __test_and_set_bit
  * This operation is atomic and cannot be reordered.  
  * It also implies a memory barrier.
  */
-static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr)
+static inline int test_and_clear_bit(int nr, volatile unsigned long * addr)
 {
 	int oldbit;
 
@@ -188,7 +188,7 @@ static __inline__ int test_and_clear_bit
  * If two examples of this operation race, one can appear to succeed
  * but actually fail.  You must protect multiple accesses with a lock.
  */
-static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
 {
 	int oldbit;
 
@@ -200,7 +200,7 @@ static __inline__ int __test_and_clear_b
 }
 
 /* WARNING: non atomic and it can be reordered! */
-static __inline__ int __test_and_change_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
 {
 	int oldbit;
 
@@ -219,7 +219,7 @@ static __inline__ int __test_and_change_
  * This operation is atomic and cannot be reordered.  
  * It also implies a memory barrier.
  */
-static __inline__ int test_and_change_bit(int nr, volatile unsigned long* addr)
+static inline int test_and_change_bit(int nr, volatile unsigned long* addr)
 {
 	int oldbit;
 
@@ -244,7 +244,7 @@ static inline int constant_test_bit(int 
 	return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
 }
 
-static __inline__ int variable_test_bit(int nr, const volatile unsigned long * addr)
+static inline int variable_test_bit(int nr, const volatile unsigned long * addr)
 {
 	int oldbit;
 
@@ -270,7 +270,7 @@ static __inline__ int variable_test_bit(
  * Returns the bit-number of the first zero bit, not the number of the byte
  * containing a bit.
  */
-static __inline__ int find_first_zero_bit(const unsigned long *addr, unsigned size)
+static inline int find_first_zero_bit(const unsigned long *addr, unsigned size)
 {
 	int d0, d1, d2;
 	int res;
@@ -295,6 +295,14 @@ static __inline__ int find_first_zero_bi
 }
 
 /**
+ * find_next_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
+ */
+int find_next_zero_bit(const unsigned long *addr, int size, int offset);
+
+/**
  * find_first_bit - find the first set bit in a memory region
  * @addr: The address to start the search at
  * @size: The maximum size to search
@@ -302,7 +310,7 @@ static __inline__ int find_first_zero_bi
  * Returns the bit-number of the first set bit, not the number of the byte
  * containing a bit.
  */
-static __inline__ int find_first_bit(const unsigned long *addr, unsigned size)
+static inline int find_first_bit(const unsigned long *addr, unsigned size)
 {
 	int d0, d1;
 	int res;
@@ -323,70 +331,12 @@ static __inline__ int find_first_bit(con
 }
 
 /**
- * find_next_zero_bit - find the first zero bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset)
-{
-	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
-	int set = 0, bit = offset & 31, res;
-	
-	if (bit) {
-		/*
-		 * Look for zero in the first 32 bits.
-		 */
-		__asm__("bsfl %1,%0\n\t"
-			"jne 1f\n\t"
-			"movl $32, %0\n"
-			"1:"
-			: "=r" (set)
-			: "r" (~(*p >> bit)));
-		if (set < (32 - bit))
-			return set + offset;
-		set = 32 - bit;
-		p++;
-	}
-	/*
-	 * No zero yet, search remaining full bytes for a zero
-	 */
-	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
-	return (offset + set + res);
-}
-
-/**
  * find_next_bit - find the first set bit in a memory region
  * @addr: The address to base the search on
  * @offset: The bitnumber to start searching at
  * @size: The maximum size to search
  */
-static __inline__ int find_next_bit(const unsigned long *addr, int size, int offset)
-{
-	const unsigned long *p = addr + (offset >> 5);
-	int set = 0, bit = offset & 31, res;
-
-	if (bit) {
-		/*
-		 * Look for nonzero in the first 32 bits:
-		 */
-		__asm__("bsfl %1,%0\n\t"
-			"jne 1f\n\t"
-			"movl $32, %0\n"
-			"1:"
-			: "=r" (set)
-			: "r" (*p >> bit));
-		if (set < (32 - bit))
-			return set + offset;
-		set = 32 - bit;
-		p++;
-	}
-	/*
-	 * No set bit yet, search remaining full words for a bit
-	 */
-	res = find_first_bit (p, size - 32 * (p - addr));
-	return (offset + set + res);
-}
+int find_next_bit(const unsigned long *addr, int size, int offset);
 
 /**
  * ffz - find first zero in word.
@@ -394,7 +344,7 @@ static __inline__ int find_next_bit(cons
  *
  * Undefined if no zero exists, so code should check against ~0UL first.
  */
-static __inline__ unsigned long ffz(unsigned long word)
+static inline unsigned long ffz(unsigned long word)
 {
 	__asm__("bsfl %1,%0"
 		:"=r" (word)
@@ -408,7 +358,7 @@ static __inline__ unsigned long ffz(unsi
  *
  * Undefined if no bit exists, so code should check against 0 first.
  */
-static __inline__ unsigned long __ffs(unsigned long word)
+static inline unsigned long __ffs(unsigned long word)
 {
 	__asm__("bsfl %1,%0"
 		:"=r" (word)
@@ -451,7 +401,7 @@ static inline int sched_find_first_bit(c
  * the libc and compiler builtin ffs routines, therefore
  * differs in spirit from the above ffz (man ffs).
  */
-static __inline__ int ffs(int x)
+static inline int ffs(int x)
 {
 	int r;
 
diff -puN /dev/null arch/i386/lib/bitops.c
--- /dev/null	2003-09-15 06:40:47.000000000 -0700
+++ 25-akpm/arch/i386/lib/bitops.c	2004-06-03 21:15:16.710892336 -0700
@@ -0,0 +1,70 @@
+#include <linux/bitops.h>
+#include <linux/module.h>
+
+/**
+ * find_next_bit - find the first set bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
+ */
+int find_next_bit(const unsigned long *addr, int size, int offset)
+{
+	const unsigned long *p = addr + (offset >> 5);
+	int set = 0, bit = offset & 31, res;
+
+	if (bit) {
+		/*
+		 * Look for nonzero in the first 32 bits:
+		 */
+		__asm__("bsfl %1,%0\n\t"
+			"jne 1f\n\t"
+			"movl $32, %0\n"
+			"1:"
+			: "=r" (set)
+			: "r" (*p >> bit));
+		if (set < (32 - bit))
+			return set + offset;
+		set = 32 - bit;
+		p++;
+	}
+	/*
+	 * No set bit yet, search remaining full words for a bit
+	 */
+	res = find_first_bit (p, size - 32 * (p - addr));
+	return (offset + set + res);
+}
+EXPORT_SYMBOL(find_next_bit);
+
+/**
+ * find_next_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
+ */
+int find_next_zero_bit(const unsigned long *addr, int size, int offset)
+{
+	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
+	int set = 0, bit = offset & 31, res;
+
+	if (bit) {
+		/*
+		 * Look for zero in the first 32 bits.
+		 */
+		__asm__("bsfl %1,%0\n\t"
+			"jne 1f\n\t"
+			"movl $32, %0\n"
+			"1:"
+			: "=r" (set)
+			: "r" (~(*p >> bit)));
+		if (set < (32 - bit))
+			return set + offset;
+		set = 32 - bit;
+		p++;
+	}
+	/*
+	 * No zero yet, search remaining full bytes for a zero
+	 */
+	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
+	return (offset + set + res);
+}
+EXPORT_SYMBOL(find_next_zero_bit);
diff -puN arch/i386/lib/Makefile~i386-uninline-bitops arch/i386/lib/Makefile
--- 25/arch/i386/lib/Makefile~i386-uninline-bitops	2004-06-03 21:15:16.704893248 -0700
+++ 25-akpm/arch/i386/lib/Makefile	2004-06-03 21:15:16.711892184 -0700
@@ -3,9 +3,8 @@
 #
 
 
-lib-y = checksum.o delay.o \
-	usercopy.o getuser.o \
-	memcpy.o strstr.o
+lib-y = checksum.o delay.o usercopy.o getuser.o memcpy.o strstr.o \
+	bitops.o
 
 lib-$(CONFIG_X86_USE_3DNOW) += mmx.o
 lib-$(CONFIG_HAVE_DEC_LOCK) += dec_and_lock.o
_