/* * linux/include/asm-arm/arch-sa1100/memory.h * * Copyright (C) 1999-2000 Nicolas Pitre <nico@cam.org> */ #ifndef __ASM_ARCH_MEMORY_H #define __ASM_ARCH_MEMORY_H #include <linux/config.h> /* * Task size: 3GB */ #define TASK_SIZE (0xc0000000UL) #define TASK_SIZE_26 (0x04000000UL) /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define TASK_UNMAPPED_BASE (TASK_SIZE / 3) /* * Page offset: 3GB */ #define PAGE_OFFSET (0xc0000000UL) /* * Physical DRAM offset is 0xc0000000 on the SA1100 */ #define PHYS_OFFSET (0xc0000000UL) /* * We take advantage of the fact that physical and virtual address can be the * same. The NUMA code is handling the large holes that might exist between * all memory banks. */ #define __virt_to_phys__is_a_macro #define __phys_to_virt__is_a_macro #define __virt_to_phys(x) (x) #define __phys_to_virt(x) (x) /* * Virtual view <-> DMA view memory address translations * virt_to_bus: Used to translate the virtual address to an * address suitable to be passed to set_dma_addr * bus_to_virt: Used to convert an address for DMA operations * to an address that the kernel can use. * * On the SA1100, bus addresses are equivalent to physical addresses. */ #define __virt_to_bus__is_a_macro #define __bus_to_virt__is_a_macro #define __virt_to_bus(x) __virt_to_phys(x) #define __bus_to_virt(x) __phys_to_virt(x) #ifdef CONFIG_DISCONTIGMEM /* * Because of the wide memory address space between physical RAM banks on the * SA1100, it's much convenient to use Linux's NUMA support to implement our * memory map representation. Assuming all memory nodes have equal access * characteristics, we then have generic discontigous memory support. * * Of course, all this isn't mandatory for SA1100 implementations with only * one used memory bank. For those, simply undefine CONFIG_DISCONTIGMEM. * * The nodes are matched with the physical memory bank addresses which are * incidentally the same as virtual addresses. * * node 0: 0xc0000000 - 0xc7ffffff * node 1: 0xc8000000 - 0xcfffffff * node 2: 0xd0000000 - 0xd7ffffff * node 3: 0xd8000000 - 0xdfffffff */ #define NR_NODES 4 /* * Given a kernel address, find the home node of the underlying memory. */ #define KVADDR_TO_NID(addr) \ (((unsigned long)(addr) - 0xc0000000) >> 27) /* * Given a physical address, convert it to a node id. */ #define PHYS_TO_NID(addr) KVADDR_TO_NID(__phys_to_virt(addr)) /* * Given a kaddr, ADDR_TO_MAPBASE finds the owning node of the memory * and returns the mem_map of that node. */ #define ADDR_TO_MAPBASE(kaddr) \ NODE_MEM_MAP(KVADDR_TO_NID((unsigned long)(kaddr))) /* * Given a kaddr, LOCAL_MEM_MAP finds the owning node of the memory * and returns the index corresponding to the appropriate page in the * node's mem_map. */ #define LOCAL_MAP_NR(kvaddr) \ (((unsigned long)(kvaddr) & 0x07ffffff) >> PAGE_SHIFT) /* * Given a kaddr, virt_to_page returns a pointer to the corresponding * mem_map entry. */ #define virt_to_page(kaddr) \ (ADDR_TO_MAPBASE(kaddr) + LOCAL_MAP_NR(kaddr)) /* * VALID_PAGE returns a non-zero value if given page pointer is valid. * This assumes all node's mem_maps are stored within the node they refer to. */ #define VALID_PAGE(page) \ ({ unsigned int node = KVADDR_TO_NID(page); \ ( (node < NR_NODES) && \ ((unsigned)((page) - NODE_MEM_MAP(node)) < NODE_DATA(node)->node_size) ); \ }) #else #define PHYS_TO_NID(addr) (0) #endif #endif