/* fastlane.c: Driver for Phase5's Fastlane SCSI Controller. * * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) * * This driver is based on the CyberStorm driver, hence the occasional * reference to CyberStorm. * * Betatesting & crucial adjustments by * Patrik Rak (prak3264@ss1000.ms.mff.cuni.cz) * */ /* TODO: * * o According to the doc from laire, it is required to reset the DMA when * the transfer is done. ATM we reset DMA just before every new * dma_init_(read|write). * * 1) Figure out how to make a cleaner merge with the sparc driver with regard * to the caches and the Sparc MMU mapping. * 2) Make as few routines required outside the generic driver. A lot of the * routines in this file used to be inline! */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/types.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/blk.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include "scsi.h" #include "hosts.h" #include "NCR53C9x.h" #include "fastlane.h" #include <linux/zorro.h> #include <asm/irq.h> #include <asm/amigaints.h> #include <asm/amigahw.h> #include <asm/pgtable.h> /* Such day has just come... */ #if 0 /* Let this defined unless you really need to enable DMA IRQ one day */ #define NODMAIRQ #endif static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); static inline void dma_clear(struct NCR_ESP *esp); static void dma_dump_state(struct NCR_ESP *esp); static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); static void dma_init_write(struct NCR_ESP *esp, __u32 vaddr, int length); static void dma_ints_off(struct NCR_ESP *esp); static void dma_ints_on(struct NCR_ESP *esp); static int dma_irq_p(struct NCR_ESP *esp); static void dma_irq_exit(struct NCR_ESP *esp); static void dma_led_off(struct NCR_ESP *esp); static void dma_led_on(struct NCR_ESP *esp); static int dma_ports_p(struct NCR_ESP *esp); static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); static unsigned char ctrl_data = 0; /* Keep backup of the stuff written * to ctrl_reg. Always write a copy * to this register when writing to * the hardware register! */ static volatile unsigned char cmd_buffer[16]; /* This is where all commands are put * before they are transferred to the ESP chip * via PIO. */ /***************************************************************** Detection */ int __init fastlane_esp_detect(Scsi_Host_Template *tpnt) { struct NCR_ESP *esp; struct zorro_dev *z = NULL; unsigned long address; if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060, z))) { unsigned long board = z->resource.start; if (request_mem_region(board+FASTLANE_ESP_ADDR, sizeof(struct ESP_regs), "NCR53C9x")) { /* Check if this is really a fastlane controller. The problem * is that also the cyberstorm and blizzard controllers use * this ID value. Fortunately only Fastlane maps in Z3 space */ if (board < 0x1000000) { goto err_release; } esp = esp_allocate(tpnt, (void *)board+FASTLANE_ESP_ADDR); /* Do command transfer with programmed I/O */ esp->do_pio_cmds = 1; /* Required functions */ esp->dma_bytes_sent = &dma_bytes_sent; esp->dma_can_transfer = &dma_can_transfer; esp->dma_dump_state = &dma_dump_state; esp->dma_init_read = &dma_init_read; esp->dma_init_write = &dma_init_write; esp->dma_ints_off = &dma_ints_off; esp->dma_ints_on = &dma_ints_on; esp->dma_irq_p = &dma_irq_p; esp->dma_ports_p = &dma_ports_p; esp->dma_setup = &dma_setup; /* Optional functions */ esp->dma_barrier = 0; esp->dma_drain = 0; esp->dma_invalidate = 0; esp->dma_irq_entry = 0; esp->dma_irq_exit = &dma_irq_exit; esp->dma_led_on = &dma_led_on; esp->dma_led_off = &dma_led_off; esp->dma_poll = 0; esp->dma_reset = 0; /* Initialize the portBits (enable IRQs) */ ctrl_data = (FASTLANE_DMA_FCODE | #ifndef NODMAIRQ FASTLANE_DMA_EDI | #endif FASTLANE_DMA_ESI); /* SCSI chip clock */ esp->cfreq = 40000000; /* Map the physical address space into virtual kernel space */ address = (unsigned long) ioremap_nocache(board, z->resource.end-board+1); if(!address){ printk("Could not remap Fastlane controller memory!"); goto err_unregister; } /* The DMA registers on the Fastlane are mapped * relative to the device (i.e. in the same Zorro * I/O block). */ esp->dregs = (void *)(address + FASTLANE_DMA_ADDR); /* ESP register base */ esp->eregs = (struct ESP_regs *)(address + FASTLANE_ESP_ADDR); /* Board base */ esp->edev = (void *) address; /* Set the command buffer */ esp->esp_command = (volatile unsigned char*) cmd_buffer; esp->esp_command_dvma = virt_to_bus(cmd_buffer); esp->irq = IRQ_AMIGA_PORTS; esp->slot = board+FASTLANE_ESP_ADDR; if (request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, "Fastlane SCSI", esp_intr)) { printk(KERN_WARNING "Fastlane: Could not get IRQ%d, aborting.\n", IRQ_AMIGA_PORTS); goto err_unmap; } /* Controller ID */ esp->scsi_id = 7; /* We don't have a differential SCSI-bus. */ esp->diff = 0; dma_clear(esp); esp_initialize(esp); printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); esps_running = esps_in_use; return esps_in_use; } } return 0; err_unmap: iounmap((void *)address); err_unregister: scsi_unregister (esp->ehost); err_release: release_mem_region(z->resource.start+FASTLANE_ESP_ADDR, sizeof(struct ESP_regs)); return 0; } /************************************************************* DMA Functions */ static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) { /* Since the Fastlane DMA is fully dedicated to the ESP chip, * the number of bytes sent (to the ESP chip) equals the number * of bytes in the FIFO - there is no buffering in the DMA controller. * XXXX Do I read this right? It is from host to ESP, right? */ return fifo_count; } static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) { unsigned long sz = sp->SCp.this_residual; if(sz > 0xfffc) sz = 0xfffc; return sz; } static void dma_dump_state(struct NCR_ESP *esp) { ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", esp->esp_id, ((struct fastlane_dma_registers *) (esp->dregs))->cond_reg)); ESPLOG(("intreq:<%04x>, intena:<%04x>\n", custom.intreqr, custom.intenar)); } static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) { struct fastlane_dma_registers *dregs = (struct fastlane_dma_registers *) (esp->dregs); unsigned long *t; cache_clear(addr, length); dma_clear(esp); t = (unsigned long *)((addr & 0x00ffffff) + esp->edev); dregs->clear_strobe = 0; *t = addr; ctrl_data = (ctrl_data & FASTLANE_DMA_MASK) | FASTLANE_DMA_ENABLE; dregs->ctrl_reg = ctrl_data; } static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) { struct fastlane_dma_registers *dregs = (struct fastlane_dma_registers *) (esp->dregs); unsigned long *t; cache_push(addr, length); dma_clear(esp); t = (unsigned long *)((addr & 0x00ffffff) + (esp->edev)); dregs->clear_strobe = 0; *t = addr; ctrl_data = ((ctrl_data & FASTLANE_DMA_MASK) | FASTLANE_DMA_ENABLE | FASTLANE_DMA_WRITE); dregs->ctrl_reg = ctrl_data; } static inline void dma_clear(struct NCR_ESP *esp) { struct fastlane_dma_registers *dregs = (struct fastlane_dma_registers *) (esp->dregs); unsigned long *t; ctrl_data = (ctrl_data & FASTLANE_DMA_MASK); dregs->ctrl_reg = ctrl_data; t = (unsigned long *)(esp->edev); dregs->clear_strobe = 0; *t = 0 ; } static void dma_ints_off(struct NCR_ESP *esp) { disable_irq(esp->irq); } static void dma_ints_on(struct NCR_ESP *esp) { enable_irq(esp->irq); } static void dma_irq_exit(struct NCR_ESP *esp) { struct fastlane_dma_registers *dregs = (struct fastlane_dma_registers *) (esp->dregs); dregs->ctrl_reg = ctrl_data & ~(FASTLANE_DMA_EDI|FASTLANE_DMA_ESI); #ifdef __mc68000__ nop(); #endif dregs->ctrl_reg = ctrl_data; } static int dma_irq_p(struct NCR_ESP *esp) { struct fastlane_dma_registers *dregs = (struct fastlane_dma_registers *) (esp->dregs); unsigned char dma_status; dma_status = dregs->cond_reg; if(dma_status & FASTLANE_DMA_IACT) return 0; /* not our IRQ */ /* Return non-zero if ESP requested IRQ */ return ( #ifndef NODMAIRQ (dma_status & FASTLANE_DMA_CREQ) && #endif (!(dma_status & FASTLANE_DMA_MINT)) && (esp_read(((struct ESP_regs *) (esp->eregs))->esp_status) & ESP_STAT_INTR)); } static void dma_led_off(struct NCR_ESP *esp) { ctrl_data &= ~FASTLANE_DMA_LED; ((struct fastlane_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; } static void dma_led_on(struct NCR_ESP *esp) { ctrl_data |= FASTLANE_DMA_LED; ((struct fastlane_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; } static int dma_ports_p(struct NCR_ESP *esp) { return ((custom.intenar) & IF_PORTS); } static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) { /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" * so when (write) is true, it actually means READ! */ if(write){ dma_init_read(esp, addr, count); } else { dma_init_write(esp, addr, count); } } #define HOSTS_C #include "fastlane.h" static Scsi_Host_Template driver_template = SCSI_FASTLANE; #include "scsi_module.c" int fastlane_esp_release(struct Scsi_Host *instance) { #ifdef MODULE unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; esp_deallocate((struct NCR_ESP *)instance->hostdata); esp_release(); release_mem_region(address, sizeof(struct ESP_regs)); free_irq(IRQ_AMIGA_PORTS, esp_intr); #endif return 1; }