cattrs Documentation
Release 24.1.2

Tin Tvrtkovic

Jan 06, 2025

INTRODUCTION

Why cattrs? 3
1.1 Examples o e e e e e e e e e 3
1.2 Features o e e e e e e e e e e e e e e e e e e e 5
1.3 Design Decisions oo vt it e e e e e e 6
1.4 Additional Documentationand Talks e e e 6
The Basics 7
2.1 Convertersand HOOKS 0 e e e e e e e e e 7
2.2 Global ConVerter o v vttt e e e e e e e e e 8
Built-in Hooks 11
3.1 Primitive Values e e e e e e e e e e e e e 11
3.2 Collections and Related Generics o v it e e 12
3.3 amrsClasses and Dataclasses L e 16
34 UNIONS . . . o o e e e e e e e e e e e 18
3.5 Special Typing Forms e 18
Customizing (Un-)structuring 21
4.1 Custom (Un-)structuring Hooks o e 21
4.2 Customizing Collections e e e e 24
43 Usingcattrs.gen Generators v v v v v it it e e e e e e e e 25
Strategies 31
5.1 Tagged Unions Strategy o o v v v it e e e e e e e 31
5.2 Include Subclasses Strategy o o e e e e e e e e e e e e e e 33
5.3 Using Class-Specific Structure and Unstructure Methods 35
5.4 Union Passthrough e e e e 36
Recipes 39
6.1 Switching Initializers L L e e e e e e e e e e 39
Validation 43
7.1 Detailed Validation e e e e 43
7.2 Non-detailed Validation 0 0 e e e e e e e e e e e 45
Preconfigured Converters 47
8.1 Standard Library jsonm e e e e e e e e e e e e 48
82 0MSON e e e e e e e e e e 48
8.3 MSGSPEC e e e e e e e e e e 48
84 wison ... L e e e e e e 49
85 msgpack e e 49

10

11

12

13

14

15

16

8.0 chor2 e e

8T bson e
8.8 pyvaml e e e e e e e e e
89 tomlkit e
Handling Unions

9.1 Default Union Strategy o i e e e e
9.2 Unstructuring Unions with Extra Metadata

Advanced Examples
10.1 Using Factory Hooks e
10.2 Using Fallback Key Names e e e

Migrations
LTI 2420 .« o o o

Converters In-Depth

12.1 Customizing Collection Unstructuring o oot v ittt
12.2 Fallback Hook Factories e e e
12.3 cattrs.Converter @ . i i i e e e e e e e e
124 cattrs.BaseCoOnverter v v v v i it e e e e e e e e e e e e e e e e

cattrs
13.1 cattrspackage L e e e e e e e e e e

Contributing
14.1 Typesof Contributions o o i e e e e e e e e e e e
142 GetStarted! e

T4.4 TIPS . v v o o e e e e e e e e e e e e e e

Benchmarking
15.1 A Sample Workflow e e e e

History

16.1 242.0 (UNRELEASED) e e e e
16.2 24.1.2/(2024-09-22) . . . oo i e e e e
16.3 24.1.1 (2024-09-11) . . o o o ot e e e
164 24.1.0 (2024-08-28) L e e e e e e
16.5 2323 (2023-11-30) o o o e e
16.6 2322 (2023-11-21) o e e e
16.7 23.2.1(2023-11-18) . . o o o o e
16.8 23.2.0 (2023-11-17) . . . o v o e e e e e e
16.9 23.1.2(2023-00-02) . . . o o i e e e e e e e
16.10 23.1.1 (2023-05-30) o ot e e e
16.11 23.1.0 (2023-05-30) . . . o o ot e e e e e e
16.12 22.2.0 (2022-10-03) . . . o o o o e e e e e e
16.13 22.1.0 (2022-04-03) . . . o o o e e e e e
16.14 1.10.0 (2022-01-04) o o o e e e e
16.15 1.9.0 (2021-12-00) o o o i e e e e e
16.16 1.8.0 (2021-08-13) o o e e e
16.17 1.7.1 (2021-05-28) o o e e e e
16.18 1.7.0 (2021-05-26) . . . o o v v o i e e e e e e e
16.19 1.6.0 (2021-04-28) . . . o o o o e e
16.20 1.5.0 (2021-04-15) o o o e e e e e e

61
61
62
63
63

65
65

109
109
110
111
111

16.21 1.4.0 (2021-03-21) o o o e 122

1622 1.3.0 (2021-02-25) o e e e 123
1623 1.2.0 (2021-01-31) o o o e 123
16.24 1.1.2 (2020-11-29) e e 123
16.25 1.1.1 (2020-10-30) o e e e e 123
16.26 1.1.0 (2020-10-29) o e e e e 123
16.27 1.0.0 (2019-12-27) o o o e e e e 124
16.28 0.9.1 (2019-10-26) o o e 124
16.29 0.9.0 (2018-07-22)« o e e e e e 124
16.30 0.8.1 (2018-06-19) e 124
16.31 0.8.0 (2018-04-14) o e e e e 124
1632 0.7.0 (2018-04-12) o i e e e 124
16.33 0.6.0 (2017-12-25) o o e e e 125
16.34 0.5.0 (2017-12-11) o o e e e e e e 125
16.35 0.4.0 (2017-07-17)« o e e e e 125
16.36 0.3.0 (2017-03-18) o e e e e 125
16.37 0.2.0 (2016-10-02) o e e e e e e 126
16.38 0.1.0 (2016-08-13) o e 126
Python Module Index 127
Index 129

cattrs Documentation, Release 24.1.2

Because validation belongs to the edges.

cattrs is a Swiss Army knife for (un)structuring and validating data in Python. In practice, that means it converts un-
structured dictionaries into proper classes and back, while validating their contents.

cattrs works best with atrs classes, and dataclasses where simple (un-)structuring works out of the box, even for nested
data, without polluting your data model with serialization details:

>>> from attrs import define
>>> from cattrs import structure, unstructure
>>> @define

class C:
a: int
.. b: list[str]
>>> instance = structure({'a': 1, 'b': ['x', 'y'l}, C)

>>> instance

C(a=1, b=["'x", 'y'])

>>> unstructure (instance)
17a%gs 1, "Ib"s ["x", 9y71}

However, cattrs does much more with a focus on functional composition and not coupling your data model to its
serialization and validation rules.

To learn more on why to use cattrs, have a look at Why cattrs?, and if you’re convinced jump right into 7he Basics!

INTRODUCTION 1

https://www.attrs.org/
https://docs.python.org/3/library/dataclasses.html

cattrs Documentation, Release 24.1.2

2 INTRODUCTION

CHAPTER
ONE

WHY CATTRS?

Python has a rich set of powerful, easy to use, built-in unstructured data types like dictionaries, lists and tuples. These
data types effortlessly convert into common serialization formats like JSON, MessagePack, CBOR, YAML or TOML.

But the data that is used by your business logic should be structured into well-defined classes, since not all combinations
of field names or values are valid inputs to your programs. The more trust you can have into the structure of your data,
the simpler your code can be, and the fewer edge cases you have to worry about.

When you’re handed unstructured data (by your network, file system, database, ...), cattrs helps to convert this data into
trustworthy structured data. When you have to convert your structured data into data types that other libraries can handle,
cattrs turns your classes and enumerations into dictionaries, integers and strings.

attrs (and to a certain degree dataclasses) are excellent libraries for declaratively describing the structure of
your data, but they’re purposefully not serialization libraries. cattrs is there for you the moment your attrs.
asdict (your_instance) and YourClass (**data) start failing you because you need more control over the
conversion process.

1.1 Examples

cattrs works best with arrs classes, and dataclasses where simple (un-)structuring works out of the box, even for nested
data, without polluting your data model with serialization details:

>>> from attrs import define
>>> from cattrs import structure, unstructure
>>> @define

class C:
a: int
.. b: list([str]
>>> instance = structure({'a': 1, 'b': ['x', 'y'l}, C)

>>> instance

C(a=1, b=['x", 'y'l)

>>> unstructure (instance)
{lal: l, lbl: ['X', 'yl]}

Important: Note how the structuring and unstructuring details do not pollute your class, meaning: your data model.
Any needs to configure the conversion are done within cattrs itself, not within your data model.

There are popular validation libraries for Python that couple your data model with its validation and serialization rules
based on, for example, web APIs. We think that’s the wrong approach. Validation and serializations are concerns of
the edges of your program — not the core. They should neither apply design pressure on your business code, nor affect
the performance of your code through unnecessary validation. In bigger real-world code bases it’s also common for data
coming from multiple sources that need different validation and serialization rules.

https://www.attrs.org/
https://docs.python.org/3/library/dataclasses.html

cattrs Documentation, Release 24.1.2

You gotta keep ‘em separated.

cattrs also works with the usual Python collection types like dictionaries, lists, or tuples when you want to normalize
unstructured data data into a certain (still unstructured) shape. For example, to convert a list of a float, an int and a string
into a tuple of ints:

>>> import cattrs

>>> cattrs.structure([1.0, 2, "3"], tuple[int, int, int])
(1, 2, 3)

Finally, here’s a much more complex example, involving atfrs classes where cattrs interprets the type annotations to
structure and unstructure the data correctly, including Enums and nested data structures:

>>> from enum import unique, Enum

>>> from typing import Sequence

>>> from cattrs import structure, unstructure
>>> from attrs import define, field

>>> Q@Qunique
class CatBreed (Enum) :
SIAMESE = "siamese"
MAINE_COON = "maine_coon"
SACRED_BIRMAN = "birman"

>>> @define
class Cat:
breed: CatBreed
names: Sequence[str]

>>> @define
class DogMicrochip:
chip_id = field() # Type annotations are optional, but recommended
time_chipped: float = field()

>>> @define
class Dog:
cuteness: int
chip: DogMicrochip | None = None

>>> p = unstructure ([Dog(cuteness=1, chip=DogMicrochip (chip_id=1, time_chipped=10.0)),
Cat (breed=CatBreed.MAINE_COON, names=('Fluffly', 'Fluffer'))])

>>> p
[{'cuteness': 1, 'chip': {'chip_id': 1, 'time_chipped': 10.0}}, {'breed': 'maine_coon
—', 'names': ['Fluffly', 'Fluffer']}]

>>> structure(p, list[Dog | Cat])

[Dog (cuteness=1, chip=DogMicrochip(chip_id=1, time_chipped=10.0)), Cat (breed=
—<CatBreed.MAINE_COON: 'maine_coon'>, names=['Fluffly', 'Fluffer'])]

Tip: Consider unstructured data a low-level representation that needs to be converted to structured data to be handled,
and use structure (). When you're done, unstructure () the data to its unstructured form and pass it along to
another library or module.

4 Chapter 1. Why cattrs?

cattrs Documentation, Release 24.1.2

1.2

Features

1.2.1 Recursive Unstructuring

attrs classes and dataclasses are converted into dictionaries in a way similar to attrs.asdict (), or into tuples
in a way similar to attrs.astuple ().

Enumeration instances are converted to their values.

Other types are let through without conversion. This includes types such as integers, dictionaries, lists and instances
of non-attrs classes.

Custom converters for any type can be registered using register_unstructure_hook.

1.2.2 Recursive Structuring

Converts unstructured data into structured data, recursively, according to your specification given as a type. The following
types are supported:

typing.Optional [T] and its 3.10+ form, T | None.

list [T],typing.List [T],typing.MutableSequence[T],typing.Sequence [T] converttoa
lists.

tuple and typing. Tuple (both variants, tuple [T, ...] and tuple[X, Y, Z]).
set [T], typing.MutableSet [T],and typing.Set [T] convert to a sets.
frozenset [T],and typing.FrozenSet [T] convert to a frozensets.

dict [K, V], typing.Dict [K, V], typing.MutableMapping[K, V], and typing.
Mapping[K, V] convert to a dictionaries.
typing.TypedDict, ordinary and generic.
typing.NewType
PEP 695 type aliases on 3.12+
1

attrs classes with simple attributes and the usual __init__ '.

All artrs classes and dataclasses with the usual ___init__, if their complex attributes have type metadata.

Unions of supported attrs classes, given that all of the classes have a unique field.
Unions of anything, if you provide a disambiguation function for it.

Custom converters for any type can be registered using register_structure_hook.

1 Simple attributes are attributes that can be assigned unstructured data, like numbers, strings, and collections of unstructured data.

1.2. Features 5

https://docs.python.org/3/library/typing.html#typing.TypedDict
https://docs.python.org/3/library/typing.html#newtype
https://docs.python.org/3/library/typing.html#type-aliases

cattrs Documentation, Release 24.1.2

1.2.3 Batteries Included
cattrs comes with pre-configured converters for a number of serialization libraries, including JSON (standard library,
orjson, Ultra]SON), msgpack, cbor2, bson, PyYAML, tomlkit and msgspec (supports only JSON at this time).

For details, see the cattrs.preconf package.

1.3 Design Decisions

cattrs is based on a few fundamental design decisions:

 Un/structuring rules are separate from the models. This allows models to have a one-to-many relationship with
un/structuring rules, and to create un/structuring rules for models which you do not own and you cannot change.
(cattrs can be configured to use un/structuring rules from models using the use_class_methods strategy.)

* Invent as little as possible; reuse existing ordinary Python instead. For example, cattrs did not have a custom
exception type to group exceptions until the sanctioned Python exceptiongroups. A side-effect of this design
decision is that, in a lot of cases, when you're solving cattrs problems you're actually learning Python instead of
learning cattrs.

* Resist the temptation to guess. If there are two ways of solving a problem, cattrs should refuse to guess and let the
user configure it themselves.

A foolish consistency is the hobgoblin of little minds, so these decisions can and are sometimes broken, but they have
proven to be a good foundation.

1.4 Additional Documentation and Talks

¢ On structured and unstructured data, or the case for cattrs

* Why I use attrs instead of pydantic

e cattrs I: un/structuring speed

» Python has a macro language - it’s Python (PyCon IT 2022)

¢ Intro to cattrs 23.1

6 Chapter 1. Why cattrs?

https://pypi.org/project/orjson/
https://pypi.org/project/ujson/
https://pypi.org/project/msgpack/
https://pypi.org/project/cbor2/
https://pypi.org/project/bson/
https://pypi.org/project/PyYAML/
https://pypi.org/project/tomlkit/
https://pypi.org/project/msgspec/
https://catt.rs/en/stable/preconf.html
https://catt.rs/en/latest/strategies.html#using-class-specific-structure-and-unstructure-methods
https://docs.python.org/3/library/exceptions.html#ExceptionGroup
https://threeofwands.com/on-structured-and-unstructured-data-or-the-case-for-cattrs/
https://threeofwands.com/why-i-use-attrs-instead-of-pydantic/
https://threeofwands.com/why-cattrs-is-so-fast/
https://www.youtube.com/watch?v=UYRSixikUTo
https://threeofwands.com/intro-to-cattrs-23-1-0/

CHAPTER
TWO

THE BASICS

All cattrs functionality is exposed through a cattrs. Converter object. A global converter is provided for conve-
nience as cattrs.global_converter but more complex customizations should be performed on private instances,
any number of which can be made.

2.1 Converters and Hooks

The core functionality of a converter is structuring and unstructuring data by composing provided and custom handling
Junctions, called hooks.

To create a private converter, instantiate a cat t rs. Converter. Converters are relatively cheap; users are encouraged
to have as many as they need.

The two main methods, st ructureand unstructure, are used to convert between structured and unstructured data.

>>> from cattrs import structure, unstructure
>>> from attrs import define

>>> @define
class Model:
a: int

>>> unstructure (Model (1))
{'a': 1}

>>> structure({"a": 1}, Model)
Model (a=1)

cattrs comes with a rich library of un/structuring hooks by default but it excels at composing custom hooks with built-in
ones.

The simplest approach to customization is writing a new hook from scratch. For example, we can write our own hook for
the int class and register it to a converter.

>>> from cattrs import Converter

>>> converter = Converter ()

>>> (@converter.register_structure_hook
def int_hook (value, type) -> int:
if not isinstance(value, int):
raise ValueError ('not an int!"'")
return value

cattrs Documentation, Release 24.1.2

Now, any other hook converting an int will use it.

Another approach to customization is wrapping (composing) an existing hook with your own function. A base hook can
be obtained from a converter and then be subjected to the very rich machinery of function composition that Python offers.

>>> base_hook = converter.get_structure_hook (Model)

>>> (@converter.register_structure_hook
def my_model_hook (value, type) —-> Model:
Apply any preprocessing to the value.
result = base_hook (value, type)
Apply any postprocessing to the model.
return result

(cattrs.structure ({}, Model) is equivalent to cattrs.get_structure_hook (Model) ({},
Model).)

Now if we use this hook to structure a Mode 1, through *+the magic of function composition** that hook will use our old
int_hook.

>>> converter.structure({"a": "1"}, Model)
+ Exception Group Traceback (most recent call last):
| File "...", line 22, in <module>
| base_hook ({"a": "1"}, Model)
| File "<cattrs generated structure _ _main__.Model>", line 9, in structure_Model
| cattrs.errors.ClassValidationError: While structuring Model (1 sub-exception)
-t] ————

Traceback (most recent call last):
File "<cattrs generated structure _ _main__ .Model>", line 5, in structure_
File "...", line 15, in my_int_hook

raise ValueError ("not an int!")
ValueError: not an int!

\
\
—~Model
\
\
\
| Structuring class Model @ attribute a

To continue reading about customizing cattrs, see Customizing (Un-)structuring. More advanced structuring customiza-
tions are commonly called Strategies.

2.2 Global Converter

Global cattrs functions, such as cattrs. structure (), use asingle global converter. Changes done to this
global converter, such as registering new structure and unstructure hooks, affect all code using the global functions.

The following functions implicitly use this global converter:
* cattrs.structure ()
e cattrs.unstructure ()
* cattrs.get_structure_hook ()
e cattrs.get_unstructure_hook ()
e cattrs.structure_attrs_fromtuple ()
e cattrs.structure_attrs_fromdict ()

Changes made to the global converter will affect the behavior of these functions.

8 Chapter 2. The Basics

cattrs Documentation, Release 24.1.2

Larger applications are strongly encouraged to create and customize different, private instances of cattrs.
Converter.

2.2. Global Converter 9

cattrs Documentation, Release 24.1.2

10 Chapter 2. The Basics

CHAPTER
THREE

BUILT-IN HOOKS

cattrs converters come with with a large repertoire of un/structuring hooks built-in. As always, complex hooks compose
with simpler ones.

3.1 Primitive Values

3.1.1 int, float, str, bytes

When structuring, use any of these types to coerce the object to that type.

>>> cattrs.structure(l, str)

lll

>>> cattrs.structure("1", float)
1.0

In case the conversion isn’t possible the expected exceptions will be propagated out. The particular exceptions are the
same as if you'd tried to do the coercion directly.

>>> cattrs.structure("not-an—-int", int)
Traceback (most recent call last):

ValueError: invalid literal for int () with base 10: 'not—an-int'

Coercion is performed for performance and compatibility reasons. Any of these hooks can be overriden if pure validation
is required instead.

>>> ¢ = Converter|()

>>> (@c.register_structure_hook
def validate (value, type) —-> int:
if not isinstance(value, type):
raise ValueError (f'{value not an instance of {type}')

>>> c.structure("1", int)
Traceback (most recent call last):

ValueError: '1l' not an instance of <class 'int'>

When unstructuring, these types are passed through unchanged.

11

cattrs Documentation, Release 24.1.2

3.1.2 Enums

Enums are structured by their values, and unstructured to their values. This works even for complex values, like tuples.

>>> @unique
class CatBreed (Enum) :
SIAMESE = "siamese"
MAINE_COON = "maine coon"
SACRED_BIRMAN = "birman"

>>> cattrs.structure ("siamese", CatBreed)
<CatBreed.SIAMESE: 'siamese'>

>>> cattrs.unstructure (CatBreed.SIAMESE)
'siamese’

Again, in case of errors, the expected exceptions are raised.

3.1.3 pathlib.Path

pathlib.Path objects are structured using their string value, and unstructured into their string value.

>>> from pathlib import Path

>>> cattrs.structure("/root", Path)
PosixPath ('/root')

>>> cattrs.unstructure (Path ("/root"))
'/root'

In case the conversion isn’t possible, the resulting exception is propagated out.

Added in version 23.1.0.

3.2 Collections and Related Generics

3.2.1 Optionals

Optional primitives and collections are supported out of the box. PEP 604 optionals (T | None) are also supported
on Python 3.10 and later.

>>> cattrs.structure (None, int)
Traceback (most recent call last):

TypeError: int () argument must be a string, a bytes-like object or a number, not
— '"NoneType'

>>> print (cattrs.structure (None, int | None))
None

Bare Optional s (non-parameterized, just Optional, as opposed to Optional [str]) aren’t supported; Op—
tional [Any] should be used instead.

Optionals handling can be customized using register_ structure_hook() and regis-—
ter_unstructure_hook ().

12 Chapter 3. Built-in Hooks

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://peps.python.org/pep-0604/

cattrs Documentation, Release 24.1.2

>>> converter = Converter ()

>>> (@converter.register_structure_hook
def hook(val: Any, type: Any) —> str | None:
if val in ("", None):
return None
return str (val)

>>> print (converter.structure("", str | None))
None

3.2.2 Lists

Lists can be structured from any iterable object. Types converting to lists are:
* typing.Sequence[T]
s typing.MutableSequence[T]
* typing.List[T]
e 1list|[T]

In all cases, a new list will be returned, so this operation can be used to copy an iterable into a list. A bare type, for
example Sequence instead of Sequence [int], is equivalent to Sequence [Any].

>>> cattrs.structure((1, 2, 3), MutableSequence[int])
(1, 2, 3]

When unstructuring, lists are copied and their contents are handled according to their inner type. A useful use case for
unstructuring collections is to create a deep copy of a complex or recursive collection.

3.2.3 Dictionaries

Dictionaries can be produced from other mapping objects. More precisely, the unstructured object must expose an
items () method producing an iterable of key-value tuples, and be able to be passed to the dict constructor as an
argument. Types converting to dictionaries are:

e dict[K, V] andtyping.Dict[K, V]
e collections.abc.MutableMapping[K, V] and typing.MutableMapping[K, V]
e collections.abc.Mapping[K, V] and typing.Mappingl[K, V]

In all cases, a new dict will be returned, so this operation can be used to copy a mapping into a dict. Any type parameters
setto typing.Any will be passed through unconverted. If both type parameters are absent, they will be treated as Any
too.

>>> from collections import OrderedDict
>>> cattrs.structure (OrderedDict ([(1, 2), (3, 4)]), dict)
{1: 2, 3: 4}

Both keys and values are converted.

>>> cattrs.structure({l: None, 2: 2.0}, dict[str, Optional[int]])
{'1': None, '2': 2}

3.2. Collections and Related Generics 13

https://docs.python.org/3/library/stdtypes.html#dict.items

cattrs Documentation, Release 24.1.2

3.2.4 Virtual Subclasses of abc.Mapping and abc .MutableMapping

If a class declares itself a virtual subclass of collections.abc.Mapping or collections.abc.
MutableMapping and its initializer accepts a dictionary, catfrs will be able to structure it by default.

3.2.5 Homogeneous and Heterogeneous Tuples
Homogeneous and heterogeneous tuples can be structured from iterable objects. Heterogeneous tuples require an iterable
with the number of elements matching the number of type parameters exactly.
Use:
e Tuple[A, B, C, D]
e tuple[A, B, C, D]
Homogeneous tuples use:
e Tuple[T, ...]
e tuple[T, ...]

In all cases a tuple will be produced. Any type parameters set to t yping.Any will be passed through unconverted.

>>> cattrs.structure([1l, 2, 3], tuplel[int, str, float])
(1, '2', 3.0)

When unstructuring, heterogeneous tuples unstructure into tuples since it’s faster and virtually all serialization libraries
support tuples natively.

See also:

Support for typing. NamedTuple.

Note: Structuring heterogenous tuples are not supported by the BaseConverter.

3.2.6 Deques

Deques can be structured from any iterable object. Types converting to deques are:
* typing.Deque[T]
e collections.deque[T]

In all cases, a new unbounded deque (max1en=None) will be produced, so this operation can be used to copy an iterable
into a deque. If you want to convert into bounded deque, registering a custom structuring hook is a good approach.

>>> from collections import deque
>>> cattrs.structure((1, 2, 3), dequel[int])
deque ([1, 2, 31)

Deques are unstructured into lists, or into deques when using the BaseConverter.

Added in version 23.1.0.

14 Chapter 3. Built-in Hooks

cattrs Documentation, Release 24.1.2

3.2.7 Sets and Frozensets

Sets and frozensets can be structured from any iterable object. Types converting to sets are:
* typing.Set [T]
e typing.MutableSet [T]
e set [T]
Types converting to frozensets are:
* typing.FrozenSet [T]
e frozenset [T]

In all cases, a new set or frozenset will be returned. A bare type, for example MutableSet instead of Mutable—
Set [int], is equivalent to MutableSet [Any].

>>> cattrs.structure([1, 2, 3, 4], set)
{1, 2, 3, 4}

Sets and frozensets are unstructured into the same class.

3.2.8 Typed Dicts

TypedDicts can be structured from mapping objects, usually dictionaries.

>>> from typing import TypedDict

>>> class MyTypedDict (TypedDict) :

a: int
>>> cattrs.structure({"a": "1"}, MyTypedDict)
{'a': 1}

Both fotal and non-total TypedDicts are supported, and inheritance between any combination works (except on 3.8 when
typing.TypedDict is used, see below). Generic TypedDicts work on Python 3.11 and later, since that is the first
Python version that supports them in general.

typing.Requiredand typing.NotRequired are supported.

On Python 3.8, using typing_extensions.TypedDict is recommended since typing.TypedDict doesn’t
support all necessary features so certain combinations of subclassing, totality and t yping.Required won’t work.

Similar to attrs classes, un/structuring can be customized using cattrs.gen.typeddicts.
make_dict_structure_fn() and cattrs.gen.typeddicts.make_dict_unstructure_fn().

>>> from typing import TypedDict

>>> from cattrs import Converter

>>> from cattrs.gen import override

>>> from cattrs.gen.typeddicts import make_dict_structure_fn

>>> class MyTypedDict (TypedDict) :

a: int
b: int
>>> ¢ = Converter|()

>>> c.register_structure_hook (
(continues on next page)

3.2. Collections and Related Generics 15

https://peps.python.org/pep-0589/
https://peps.python.org/pep-0589/#totality
https://peps.python.org/pep-0655/

cattrs Documentation, Release 24.1.2

(continued from previous page)
MyTypedDict,
make_dict_structure_fn(
MyTypedDict,
C 4
a=override (rename="a-with-dash")

>>> c.structure ({"a-with-dash": 1, "b": 2}, MyTypedDict)
{'b': 2, 'a': 1}

TypedDicts unstructure into dictionaries, potentially unchanged (depending on the exact field types and registered hooks).

>>> from typing import TypedDict
>>> from datetime import datetime, timezone
>>> from cattrs import Converter

>>> class MyTypedDict (TypedDict) :
a: datetime

>>> ¢ = Converter|()
>>> c.register_unstructure_hook (datetime, lambda d: d.timestamp())

>>> c.unstructure ({"a": datetime (1970, 1, 1, tzinfo=timezone.utc)}, unstructure_
—as=MyTypedDict)
{'a': 0.0}

Added in version 23.1.0.

3.3 attrs Classes and Dataclasses

attrs classes and dataclasses work out of the box. The fields require type annotations (even if static type-checking is not
being used), or they will be treated as ryping. Any.

When structuring, given a mapping d and class A, cattrs will instantiate A with d unpacked.

>>> @define
class A:

a: int

b: int

>>> cattrs.structure({'a': 1, 'b': '2'}, A)
A(a=1, b=2)

Tuples can be structured into classes using st ructure_attrs_fromtuple () (fromtuple as in the opposite of
attrs.astuple and BaseConverter.unstructure_attrs_astuple()).

>>> @define

class A:
a: str
b: int
>>> cattrs.structure_attrs_fromtuple(['string', '2'], A)

A(a='string', b=2)

16 Chapter 3. Built-in Hooks

https://www.attrs.org/en/stable/api.html#attrs.astuple

cattrs Documentation, Release 24.1.2

Loading from tuples can be made the default by creating a new Converter with unstruct_strat=cattr.
UnstructureStrategy.AS_TUPLE.

>>> converter = cattrs.Converter (unstruct_strat=cattr.UnstructureStrategy.AS_TUPLE)
>>> @define
class A:
a: str
b: int

>>> converter.structure(['string', '2'], A)
A(a='string', b=2)

Structuring from tuples can also be made the default for specific classes only by registering a hook the usual way.

>>> converter = cattrs.Converter ()

>>> (@define

class A:
a: str
b: int

>>> converter.register_structure_hook (A, converter.structure_attrs_fromtuple)

3.3.1 Generics

Generic attrs classes and dataclasses are fully supported, both using t yping.Generic and PEP 695.

>>> @define
class A[T]:
a: T

>>> cattrs.structure({"a": "1"}, Alint])
A(a=1)

3.3.2 Using Attribute Types and Converters

By default, st ructure () will use hooks registered using register_structure_hook () to convert values to
the attribute type, and proceed to invoking any converters registered on attributes with field.

>>> from ipaddress import IPv4Address, ip_address
>>> converter = cattrs.Converter ()

Note: register_structure_hook has not been called, so this will fallback to 'ip_
—address'
>>> @define

class A:
a: IPv4Address = field(converter=ip_address)
>>> converter.structure({'a': "127.0.0.1"}, A)

A (a=IPv4Address ('127.0.0.1"))

Priority is still given to hooks registered with register_ structure_hook (), but this priority can be inverted by
setting prefer_attrib_converters to True.

3.3. attrs Classes and Dataclasses 17

https://peps.python.org/pep-0695/

cattrs Documentation, Release 24.1.2

>>> converter = cattrs.Converter (prefer_attrib_converters=True)

>>> @define

class A:
a: int = field(converter=lambda v: int (v) + 5)
>>> converter.structure({'a': "10'}, A)
A (a=15)
See also:

If an artrs or dataclass class uses inheritance and as such has one or several subclasses, it can be structured automatically
to its exact subtype by using the include subclasses strategy.

3.4 Unions

Unions of NoneType and a single other type (also known as optionals) are supported by a special case.

3.4.1 Automatic Disambiguation

cattrs includes an opinionated strategy for automatically handling unions of attrs classes; see Default Union Strategy for
details.

When unstructuring these kinds of unions, each union member will be unstructured according to the hook for that type.

3.4.2 Unions of Simple Types

cattrs comes with the Union Passthrough, which enables converters to structure unions of many primitive types and literals.
This strategy can be applied to any converter, and is pre-applied to all preconf converters according to their underlying
protocols.

3.5 Special Typing Forms

3.5.1 typing.Any

When structuring, use t yping.Any to avoid applying any conversions to the object you're structuring; it will simply be
passed through.

>>> cattrs.structure(l, Any)

1

>> d = {1: 1}

>>> cattrs.structure(d, Any) is d
True

When unstructuring, t yping.Any will make the value be unstructured according to its runtime class.

Changed in version 24.1.0: Previously, the unstructuring rules for Any were underspecified, leading to inconsistent be-
havior.

Changed in version 24.1.0: typing_extensions.Any is now also supported.

18 Chapter 3. Built-in Hooks

cattrs Documentation, Release 24.1.2

3.5.2 typing.Literal

When structuring, PEP 5806 literals are validated to be in the allowed set of values.

>>> from typing import Literal

>>> cattrs.structure(l, Literalll, 21)
1

When unstructuring, literals are passed through.

Added in version 1.7.0.

3.5.3 typing.NamedTuple

Named tuples with type hints (created from typing.NamedTuple) are supported. Named tuples are un/structured
using tuples or lists by default.

The cattrs.cols module contains hook factories for un/structuring named tuples using dictionaries instead, see here
for details.

Added in version 24.1.0.
3.5.4 typing.Final

PEP 591 Final attribute types (Final [int]) are supported and handled according to the inner type (in this case, int).
Added in version 23.1.0.

3.5.5 typing.Annotated

PEP 593 annotations (typing.Annotated[type, ...])aresupportedand are handled using the first type present
in the annotated type.

Added in version 1.4.0.
3.5.6 Type Aliases

Type aliases are supported on Python 3.12+ and are handled according to the rules for their underlying type. Their hooks
can also be overriden using Predicate Hooks.

Warning: Type aliases using t yping. TypeAlias aren’t supported since there is no way at runtime to distinguish
them from their underlying types.

>>> from datetime import datetime, UTC

>>> type IsoDate = datetime
>>> converter = cattrs.Converter ()
>>> converter.register_structure_hook_func (
lambda t: t is IsoDate, lambda v, _: datetime.fromisoformat (v)

(continues on next page)

3.5. Special Typing Forms 19

https://peps.python.org/pep-0586/
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://peps.python.org/pep-0591/
https://www.python.org/dev/peps/pep-0593/
https://docs.python.org/3/library/typing.html#type-aliases
https://docs.python.org/3/library/typing.html#typing.TypeAlias

cattrs Documentation, Release 24.1.2

(continued from previous page)
)
>>> converter.register_unstructure_hook_func (
lambda t: t is IsoDate, lambda v: v.isoformat ()

>>> converter.structure ("2022-01-01", IsoDate)
datetime.datetime (2022, 1, 1, 0, 0)

>>> converter.unstructure (datetime.now (UTC), unstructure_as=IsoDate)
'2023-11-20T23:10:46.728394+00:00"'

Added in version 24.1.0.

3.5.7 typing.NewType

NewTypes are supported and are handled according to the rules for their underlying type. Their hooks can also be
overriden using Converter.register_structure_hook ().

>>> from typing import NewType
>>> from datetime import datetime

>>> TIsoDate = NewType ("IsoDate", datetime)

>>> converter = cattrs.Converter ()
>>> converter.register_structure_hook (IsoDate, lambda v, _: datetime.fromisoformat (v))

>>> converter.structure ("2022-01-01", IsoDate)
datetime.datetime (2022, 1, 1, 0, 0)

Added in version 22.2.0.

3.5.8 typing.Protocol

Protocols cannot be structured by default and so require custom hooks.
Protocols are unstructured according to the actual runtime type of the value.

Added in version 1.9.0.

20 Chapter 3. Built-in Hooks

https://docs.python.org/3/library/typing.html#newtype
https://peps.python.org/pep-0544/

CHAPTER
FOUR

CUSTOMIZING (UN-)STRUCTURING

This section describes customizing the unstructuring and structuring processes in catfrs.

4.1 Custom (Un-)structuring Hooks

You can write your own structuring and unstructuring functions and register them for types using Converter.
register_structure_hook () and Converter.register_unstructure_hook (). This approach is
the most flexible but also requires the most amount of boilerplate.

register_structure_hook () and register_unstructure_hook () use a Python singledispatch under
the hood. singledispatch is powerful and fast but comes with some limitations; namely that it performs checks using
issubclass () which doesn’t work with many Python types. Some examples of this are:

* various generic collections (1ist [int] is not a subclass of 1ist)
e literals (Literal [1] isnot a subclass of Literal[1])

¢ generics (MyClass [int] is not a subclass of MyClass)

e protocols, unless they are runt ime_checkable

e various modifiers, such as Final and NotRequired

* newtypes and 3.12 type aliases

* typing.Annotated

... and many others. In these cases, predicate functions should be used instead.

4.1.1 Use as Decorators

register_ structure_hook () and register_unstructure_hook () can also be used as decorators.
When used this way they behave a little differently.

register_structure_hook () will inspect the return type of the hook and register the hook for that type.

@converter.register_structure_hook

def my_int_hook(val: Any, _) -> int:
""'"This hook will be registered for “int's."""
return int (val)

register_unstructure_hook () will inspect the type of the first argument and register the hook for that type.

21

https://docs.python.org/3/library/functools.html#functools.singledispatch

cattrs Documentation, Release 24.1.2

from datetime import datetime

@converter.register_unstructure_hook

def my_datetime_hook (val: datetime) -> str:
""'"This hook will be registered for ‘datetime’ s."""
return val.isoformat ()

The non-decorator approach is still recommended when dealing with lambdas, hooks produced elsewhere, unannotated
hooks and situations where type introspection doesn’t work.

Added in version 24.1.0.

4.1.2 Predicate Hooks

A predicate is a function that takes a type and returns true or false depending on whether the associated hook can handle
the given type.

The register_unstructure_hook_func () and register_structure_hook_func () are used to link
un/structuring hooks to arbitrary types. These hooks are then called predicate hooks, and are very powerful.

Predicate hooks are evaluated after the singledispatch hooks. In the case where both a singledispatch hook and a predicate
hook are present, the singledispatch hook will be used. Predicate hooks are checked in reverse order of registration,
one-by-one, until a match is found.

The following example demonstrates a predicate that checks for the presence of an attribute on a class (custom), and
then overrides the structuring logic.

>>> class D:

custom = True

def _ init_ (self, a):
self.a = a

def _ repr__ (self):
return f'D (a={self.a})’

@classmethod

def deserialize(cls, data):
return cls (data["a"])

>>> cattrs.register_structure_hook_func (

lambda cls: getattr(cls, "custom", False), lambda d, t: t.deserialize(d)

>>> cattrs.structure({'a': 2}, D)
D (a=2)

4.1.3 Hook Factories
Hook factories are higher-order predicate hooks: they are functions that produce hooks. Hook factories are commonly
used to create very optimized hooks by offloading part of the work into a separate, earlier step.

Hook factories are registered using Converter.register _unstructure_hook_factory() and
Converter.register_structure_hook_factory().

Here’s an example showing how to use hook factories to apply the forbid_extra_keys to all attrs classes:

22 Chapter 4. Customizing (Un-)structuring

cattrs Documentation, Release 24.1.2

>>> from attrs import define, has
>>> from cattrs import Converter
>>> from cattrs.gen import make_dict_structure_fn

>>> ¢ = Converter ()
>>> c.register_structure_hook_factory(

has,
lambda cl: make_dict_structure_fn(cl, c, _cattrs_forbid_extra_keys=True)

>>> @define
class E:
an_int: int

>>> c.structure ({"an_int": 1, "else": 2}, E)
Traceback (most recent call last):

cattrs.errors.ForbiddenExtraKeysError: Extra fields in constructor for E: else

Hook factories can receive the current converter by exposing an additional required parameter.

A complex use case for hook factories is described over at Using Factory Hooks.

Use as Decorators

register_unstructure_hook_factory()and register_structure_hook_factory () canalsobe

used as decorators.

Here’s an example of using an unstructure hook factory to handle unstructuring queues.

>>> from queue import Queue
>>> from typing import get_origin
>>> from cattrs import Converter

>>> ¢ = Converter|()

>>> @Qc.register_unstructure_hook_factory(lambda t: get_origin(t) is Queue)

def queue_hook_factory(cl: Any, converter: Converter) -> Callable:
type_arg = get_args(cl) [0]
elem_handler = converter.get_unstructure_hook (type_arg)
def unstructure_hook (v: Queue) —> list:
res = []

while not v.empty():
res.append (elem_handler (v.get_nowait ()))
return res

return unstructure_hook
>>> g = Queue ()
>>> g.put (1)

>>> g.put (2)

>>> c.unstructure (g, unstructure_as=Queue[int])
[1, 2]

4.1. Custom (Un-)structuring Hooks

https://docs.python.org/3/library/queue.html#queue.Queue

cattrs Documentation, Release 24.1.2

4.2 Customizing Collections

The cattrs.cols module contains predicates and hook factories useful for customizing collection handling. These
hook factories can be wrapped to apply complex customizations.

Auvailable predicates are:
e is_any_set
e is_frozenset
e is_set
* is_sequence
* is_mapping

* is_namedtuple

Tip: These predicates aren’t cattrs-specific and may be useful in other contexts.

>>> from cattrs.cols import is_sequence

>>> is_sequence (list[str])
True

Available hook factories are:
e iterable_unstructure_factory
e]list_structure_factory
* namedtuple_structure_factory
* namedtuple_unstructure_factory
* namedtuple_dict_structure_factory
* namedtuple_dict_unstructure_factory
* mapping_structure_factory
Additional predicates and hook factories will be added as requested.

For example, by default sequences are structured from any iterable into lists. This may be too lax, and additional validation
may be applied by wrapping the default list structuring hook factory.

from cattrs.cols import is_sequence, list_structure_factory
c = Converter ()

@c.register_structure_hook_factory (is_sequence)
def strict_list_hook_factory(type, converter):

First, we generate the default hook...
list_hook = list_structure_factory (type, converter)

Then, we wrap it with a function of our own...
def strict_list_hook (value, type):
if not isinstance(value, list):
raise ValueError ("Not a list!")
(continues on next page)

24 Chapter 4. Customizing (Un-)structuring

cattrs Documentation, Release 24.1.2

(continued from previous page)

return list_hook (value, type)

And finally, we return our own composite hook.
return strict_list_hook

Now, all sequence structuring will be stricter:

>>> c.structure ({"a", "b", "c"}, list[str])
Traceback (most recent call last):

ValueError: Not a list!

Added in version 24.1.0.

4.2.1 Customizing Named Tuples

Named tuples can be un/structured using dictionaries using the namedtuple_dict_structure_factory and
namedtuple_dict_unstructure_factory hook factories.

To unstructure all named tuples into dictionaries:

>>> from typing import NamedTuple

>>> from cattrs.cols import is_namedtuple, namedtuple_dict_unstructure_factory
>>> ¢ = Converter()

>>> c.register_unstructure_hook_factory (is_namedtuple, namedtuple_dict_unstructure_
—factory)
<function namedtuple_dict_unstructure_factory at ...>

>>> class MyNamedTuple (NamedTuple) :
a: int

>>> c.unstructure (MyNamedTuple (1))
{'a': 1}

To only un/structure some named tuples into dictionaries, change the predicate function when registering the hook factory:

>>> c.register_unstructure_hook_factory (
lambda t: t is MyNamedTuple,
namedtuple_dict_unstructure_factory,
)

<function namedtuple_dict_unstructure_factory at ...>

4.3 Using cattrs.gen Generators

The cattrs.gen module allows for generating and compiling specialized hooks for unstructuring attrs classes, data-
classes and typed dicts. The default Converter, upon first encountering one of these types, will use the generation
functions mentioned here to generate specialized hooks for it, register the hooks and use them.

One reason for generating these hooks in advance is that they can bypass a lot of cattrs machinery and be significantly
faster than normal cattrs. The hooks are also good building blocks for more complex customizations.

Another reason is overriding behavior on a per-attribute basis.

4.3. Using cattrs.gen Generators 25

cattrs Documentation, Release 24.1.2

Currently, the overrides only support generating dictionary un/structuring hooks (as opposed to tuples), and support
omit_if_default, forbid_extra_keys, rename and omit.

4.3.1 omit_if_default

This override can be applied on a per-class or per-attribute basis. The generated unstructuring hook will skip unstructuring
values that are equal to their default or factory values.

>>> from cattrs.gen import make_dict_unstructure_fn, override

>>> @define
class WithDefault:
a: int
b: dict = Factory(dict)

>>> ¢ = cattrs.Converter ()

>>> c.register_unstructure_hook (WithDefault, make_dict_unstructure_fn (WithDefault, c,.
—b=override (omit_if_default=True)))

>>> c.unstructure (WithDefault (1))

{'a': 1}

Note that the per-attribute value overrides the per-class value. A side-effect of this is the ability to force the presence of a
subset of fields. For example, consider a class with a dateTime field and a factory for it: skipping the unstructuring of
the dateTime field would be inconsistent and based on the current time. So we apply the omit_1if_default rule
to the class, but not to the dateTime field.

Note:
The parameter to "make_dict_unstructure_function® is named " _cattrs_omit_if_
—default ™ instead of just "~ “omit_if_ default® to avoid potential collisions with an.

—override for a field named "~ “omit_if default’ .

>>> from datetime import datetime
>>> from cattrs.gen import make_dict_unstructure_fn, override

>>> @define
class TestClass:
a: Optional[int] = None
b: datetime = Factory (datetime.utcnow)

>>> c = cattrs.Converter ()

>>> hook = make_dict_unstructure_fn (TestClass, c, _cattrs_omit_if_ default=True, .
—b=override (omit_if_ default=False))

>>> c.register_unstructure_hook (TestClass, hook)

>>> c.unstructure (TestClass ())

{'b': ...}

This override has no effect when generating structuring functions.

26 Chapter 4. Customizing (Un-)structuring

cattrs Documentation, Release 24.1.2

43.2 forbid_extra_keys

By default cattrs is lenient in accepting unstructured input. If extra keys are present in a dictionary, they will be ig-
nored when generating a structured object. Sometimes it may be desirable to enforce a stricter contract, and to raise
an error when unknown keys are present - in particular when fields have default values this may help with catching ty-
pos. forbid_extra_keys can also be enabled (or disabled) on a per-class basis when creating structure hooks with
make_dict_structure_fn().

>>> from cattrs.gen import make_dict_structure_fn
>>>
>>> @define

class TestClass:

number: int = 1

>>>
>>> c = cattrs.Converter (forbid_extra_keys=True)
>>> c.structure ({"nummber": 2}, TestClass)
Traceback (most recent call last):

ForbiddenExtraKeyError: Extra fields in constructor for TestClass: nummber

>>> hook = make_dict_structure_fn (TestClass, c, _cattrs_forbid_extra_keys=False)
>>> c.register_structure_hook (TestClass, hook)

>>> c.structure ({"nummber": 2}, TestClass)

TestClass (number=1)

This behavior can only be applied to classes or to the default for the Converter, and has no effect when generating
unstructuring functions.

Changed in version 23.2.0: The value for the make_dict_structure_fn._cattrs_forbid_extra_keys
parameter is now taken from the given converter by default.

4.3.3 rename

Using the rename override makes catt rs use the provided name instead of the real attribute name. This is useful if an
attribute name is a reserved keyword in Python.

>>> from pendulum import DateTime
>>> from cattrs.gen import make_dict_unstructure_fn, make_dict_structure_fn, override

>>> @define
class ExampleClass:
klass: Optional[int]

>>> ¢ = cattrs.Converter ()

>>> unst_hook = make_dict_unstructure_fn (ExampleClass, c, klass=override (rename="class
%"))

>>> st_hook = make_dict_structure_fn (ExampleClass, c, klass=override (rename="class"))
>>> c.register_unstructure_hook (ExampleClass, unst_hook)

>>> c.register_structure_hook (ExampleClass, st_hook)

>>> c.unstructure (ExampleClass (1))

{'class': 1}

>>> c.structure({'class': 1}, ExampleClass)

ExampleClass (klass=1)

4.3. Using cattrs.gen Generators 27

cattrs Documentation, Release 24.1.2

4.3.4 omit

This override can only be applied to individual attributes. Using the omit override will simply skip the attribute com-
pletely when generating a structuring or unstructuring function.

>>> from cattrs.gen import make_dict_unstructure_fn, override
>>>

>>> @define

class ExampleClass:

.. an_int: int

>>>
>>> ¢ = cattrs.Converter ()

>>> unst_hook make_dict_unstructure_fn (ExampleClass, c, an_int=override (omit=True))
>>> c.register_unstructure_hook (ExampleClass, unst_hook)

>>> c.unstructure (ExampleClass (1))

{3

4.3.5 struct_hook and unstruct_hook

By default, the generators will determine the right un/structure hook for each attribute of a class at time of generation
according to the type of each individual attribute.

This process can be overriden by passing in the desired un/structure hook manually.

>>> from cattrs.gen import make_dict_structure_fn, override

>>> (@define
class ExampleClass:
an_int: int

>>> ¢ = cattrs.Converter ()
>>> st_hook = make_dict_structure_fn(
ExampleClass, ¢, an_int=override (struct_hook=lambda v, _: v + 1)

)

>>> c.register_structure_hook (ExampleClass, st_hook)

>>> c.structure ({"an_int": 1}, ExampleClass)
ExampleClass (an_int=2)

4.3.6 use_alias

By default, fields are un/structured to and from dictionary keys exactly matching the field names. attrs classes support
attrs field aliases, which override the __init__ parameter name for a given field. By generating your un/structure
function with _cattrs_use_alias=True, cattrs will use the field alias instead of the field name as the un/structured
dictionary key.

>>> from cattrs.gen import make_dict_structure_f£fn
>>>
>>> @define

class AliasClass:

.. number: int = field(default=1, alias="count")
>>>
>>> ¢ = cattrs.Converter ()
>>> hook = make_dict_structure_fn(AliasClass, c, _cattrs_use_alias=True)

(continues on next page)

28 Chapter 4. Customizing (Un-)structuring

cattrs Documentation, Release 24.1.2

(continued from previous page)
>>> c.register_structure_hook (AliasClass, hook)
>>> c.structure ({"count": 2}, AliasClass)
AliasClass (number=2)

Added in version 23.2.0.

4.3.7 include_init_false

By default, attrs fields defined as init=False are skipped when un/structuring. By generating your un/structure func-
tion with _cattrs_include_init_false=True,all init=False fields will be included for un/structuring.

>>> from cattrs.gen import make_dict_structure_fn
>>>
>>> @define

class ClassWithInitFalse:

number: int = field(default=1, init=False)
>>>
>>> ¢ = cattrs.Converter ()
>>> hook = make_dict_structure_fn(ClassWithInitFalse, ¢, _cattrs_include_init_

—false=True)

>>> c.register_structure_hook (ClassWithInitFalse, hook)
>>> c.structure ({"number": 2}, ClassWithInitFalse)
ClassWithInitFalse (number=2)

A single attribute can be included by overriding it with omit=False.

>>> c = cattrs.Converter ()

>>> hook = make_dict_structure_fn(ClassWithInitFalse, ¢, number=override (omit=False))
>>> c.register_structure_hook (ClassWithInitFalse, hook)

>>> c.structure ({"number": 2}, ClassWithInitFalse)

ClassWithInitFalse (number=2)

Added in version 23.2.0.

4.3. Using cattrs.gen Generators 29

cattrs Documentation, Release 24.1.2

30 Chapter 4. Customizing (Un-)structuring

CHAPTER
FIVE

STRATEGIES

cattrs ships with a number of strategies for customizing un/structuring behavior.

Strategies are prepackaged, high-level patterns for quickly and easily applying complex customizations to a converter.

5.1 Tagged Unions Strategy

Found at cattrs.strategies.configure_tagged_union ().

The tagged union strategy allows for un/structuring a union of classes by including an additional field (the fag) in the
unstructured representation. Each tag value is associated with a member of the union.

>>> from cattrs.strategies import configure_tagged_union
>>> from cattrs import Converter
>>> converter = Converter ()

>>> @define
class A:

a: int

>>> @define

class B:
b: str
>>> configure_tagged_union (A | B, converter)
>>> converter.unstructure (A(1l), unstructure_as=A | B)
{'a': 1, '_type': 'A'}
>>> converter.structure({'a': 1, '_type': 'A'}, A | B)
A(a=1)

By default, the tag field name is _type and the tag value is the class name of the union member. Both the field name
and value can be overriden.

The tag_generator parameter is a one-argument callable that will be called with every member of the union to
generate a mapping of tag values to union members. Here are some common tag_generator uses:

Tag info available in Recommended tag_generator

Name of the class Use the default, or lambda cl: cl._ name_
A class variable (classvar) lambda cl: cl.classvar

A dictionary (mydict) mydict.get ormydict._ getitem_

An enum of possible values Build a dictionary of classes to enum values and use it

31

cattrs Documentation, Release 24.1.2

The union members aren’t required to be attrs classes or dataclasses, although those work automatically. They may be
anything that cattrs can un/structure from/to a dictionary, for example a type with registered custom hooks.

A default member can be specified to be used if the tag is missing or is unknown. This is useful for evolving APIs in
a backwards-compatible way; an endpoint taking class A can be changed to take A | B with A as the default (for old
clients which do not send the tag).

This strategy only applies in the context of the union; the normal un/structuring hooks are left untouched. This also means
union members can be reused in multiple unions easily.

Unstructuring as a union.
>>> converter.unstructure (A(l), unstructure_as=A | B)
{'a': 1, '_type': 'A'}

Unstructuring as just an "A°
>>> converter.unstructure (A (1))
{'a': 1}

5.1.1 Real-life Case Study

The Apple App Store supports server callbacks, by which Apple sends a JSON payload to a URL of your choice. The
payload can be interpreted as about a dozen different messages, based on the value of the notificationType field.

To keep the example simple we define two classes, one for the REFUND event and one for everything else.

@define
class Refund:
originalTransactionId: str

@define
class OtherAppleNotification:

notificationType: str

AppleNotification = Refund | OtherAppleNotification

Next, we use the fagged unions strategy to prepare our converter. The tag value for the Re fund event is REFUND, and
we can let the OtherAppleNotification class handle all the other cases. The tag_generator parameter is a
callable, so we can give it the get method of a dictionary.

>>> from cattrs.strategies import configure_tagged_union

>>> ¢ = Converter()

>>> configure_tagged_union (
AppleNotification,
Cy

tag_name="notificationType",
tag_generator={Refund: "REFUND"}.get,
default=OtherAppleNotification

The converter is now ready to start structuring Apple notifications.

>>> payload = {"notificationType": "REFUND", "originalTransactionId": "1"}
>>> notification = c.structure(payload, AppleNotification)

>>> match notification:
case Refund(txn_id):
(continues on next page)

32 Chapter 5. Strategies

https://developer.apple.com/documentation/appstoreservernotifications

cattrs Documentation, Release 24.1.2

(continued from previous page)
print (f"Refund for {txn_id}!")
case OtherAppleNotification (not_type) :
ce print ("Can't handle this yet")
Refund for 1!

Added in version 23.1.0.

5.2 Include Subclasses Strategy

Found at cattrs.strategies.include_subclasses ().

The include subclass strategy allows the un/structuring of a base class to an instance of itself or one of its descendants.
Conceptually with this strategy, each time an un/structure operation for the base class is asked, cattrs machinery
replaces that operation as if the union of the base class and its descendants had been asked instead.

>>> from attrs import define
>>> from cattrs.strategies import include_subclasses
>>> from cattrs import Converter

>>> @define
class Parent:
a: int

>>> @define
class Child (Parent) :
b: str

>>> converter = Converter ()
>>> include_subclasses (Parent, converter)

>>> converter.unstructure (Child(a=1, b="foo"), unstructure_as=Parent)
{'a': 1, 'b': '"foo'}

>>> converter.structure({'a': 1, 'b': 'foo'}, Parent)
Child(a=1, b='foo')

In the example above, we asked to unstructure then structure a Chi1d instance as the Parent class and in both cases
we correctly obtained back the unstructured and structured versions of the Child instance. If we did not apply the
include_subclasses strategy, this is what we would have obtained:

>>> converter_no_subclasses = Converter ()

>>> converter_no_subclasses.unstructure (Child(a=1, b="foo"), unstructure_as=Parent)
{'a': 1}

>>> converter_no_subclasses.structure({'a': 1, 'b': 'foo'}, Parent)
Parent (a=1)

Without the application of the strategy, in both unstructure and structure operations, we received a Parent instance.

Note: The handling of subclasses is an opt-in feature for two main reasons:

* Performance. While small and probably negligible in most cases the subclass handling incurs more function calls
and has a performance impact.

5.2. Include Subclasses Strategy 33

cattrs Documentation, Release 24.1.2

 Customization. The specific handling of subclasses can be different from one situation to the other. In particular
there is not apparent universal good defaults for disambiguating the union type. Consequently the decision is left
to the user.

Warning: To work properly, all subclasses must be defined when the include_subclasses strategy is applied
to a converter. If subclasses types are defined later, for instance in the context of a plug-in mechanism using
inheritance, then those late defined subclasses will not be part of the subclasses union type and will not be un/structured
as expected.

5.2.1 Customization

In the example shown in the previous section, the default options for include_subclasses work well because
the Child class has an attribute that do not exist in the Parent class (the b attribute). The automatic union type
disambiguation function which is based on finding unique fields for each type of the union works as intended.

Sometimes, more disambiguation customization is required. For instance, the unstructuring operation would have failed
if Child did not have an extra attribute or if a sibling of Child had also a b attribute. For those cases, a callable
of 2 positional arguments (a union type and a converter) defining a fagged union strategy can be passed to the in—
clude_subclasses strategy. configure_tagged_union () can be used as-is, but if you want to change its
defaults, the partial function from the functools module in the standard library can come in handy.

>>> from functools import partial

>>> from attrs import define

>>> from cattrs.strategies import include_subclasses, configure_tagged_union
>>> from cattrs import Converter

>>> @define
class Parent:
a: int

>>> @define
class Childl (Parent) :
b: str

>>> @define
class Child2 (Parent) :

b: int
>>> converter = Converter ()
>>> union_strategy = partial (configure_tagged_union, tag_name="type_ name")

>>> include_subclasses (Parent, converter, union_strategy=union_strategy)

>>> converter.unstructure (Childl (a=1, b="foo"), unstructure_as=Parent)
{'a': 1, 'b': 'foo', 'type_name': 'Childl'}

>>> converter.structure({'a': 1, 'b': 1, 'type_name': 'Child2'}, Parent)
Child2 (a=1, b=1)

Other customizations available see are (see 1nclude_subclasses ()):
* The exact list of subclasses that should participate to the union with the subclasses argument.

* Attribute overrides that permit the customization of attributes un/structuring like renaming an attribute.

34 Chapter 5. Strategies

https://docs.python.org/3/library/functools.html#functools.partial

cattrs Documentation, Release 24.1.2

Here is an example involving both customizations:

>>> from attrs import define
>>> from cattrs.strategies import include_subclasses
>>> from cattrs import Converter, override

>>> @define
class Parent:
a: int

>>> @define
class Child (Parent) :

b: str
>>> converter = Converter ()
>>> include_subclasses (
Parent,
converter,
subclasses= (Parent, Child),
overrides={"b": override (rename="c") }

>>> converter.unstructure (Child(a=1, b="foo"), unstructure_as=Parent)
{'a': 1, 'c': '"foo'}

>>> converter.structure({'a': 1, 'c': 'foo'}, Parent)
Child(a=1, b='foo'")

Added in version 23.1.0.

5.3 Using Class-Specific Structure and Unstructure Methods

Found at cattrs.strategies.use_class_methods ().

This strategy allows for un/structuring logic on the models themselves. It can be applied for both structuring and unstruc-
turing (also simultaneously).

If a class requires special handling for (un)structuring, you can add a dedicated (un)structuring method:

>>> from attrs import define
>>> from cattrs import Converter
>>> from cattrs.strategies import use_class_methods

>>> @define
class MyClass:

a: int
@classmethod
def _structure(cls, data: dict):
return cls (data["b"] + 1) # expecting "b'", not "a"

def _unstructure(self):
return {"c": self.a - 1} # unstructuring as '"c", not "a"

>>> converter = Converter ()

(continues on next page)

5.3. Using Class-Specific Structure and Unstructure Methods 35

cattrs Documentation, Release 24.1.2

(continued from previous page)

>>> use_class_methods (converter, "_structure", "_unstructure")
>>> print (converter.structure ({"b": 42}, MyClass))

MyClass (a=43)

>>> print (converter.unstructure (MyClass (42)))

{'c': 41}

Any class without a _structure or _unstructure method will use the default strategy for structuring or unstruc-
turing, respectively. Feel free to use other names. The stategy can be applied multiple times (with different method
names).

If you want to (un)structured nested objects, just append a converter parameter to your (un)structuring methods and you
will receive the converter there:

>>> @define
class Nested:
m: MyClass

@classmethod
def _structure(cls, data: dict, conv):
return cls (conv.structure (data["n"], MyClass))

def _unstructure(self, conv):
return {"n": conv.unstructure(self.m)}

>>> print (converter.structure ({"n": {"b": 42}}, Nested))
Nested (m=MyClass (a=43))

>>> print (converter.unstructure (Nested (MyClass (42))))
{'n': {'c': 41}}

Added in version 23.2.0.

5.4 Union Passthrough

Found at cattrs.strategies.configure_union_passthrough ().
The union passthrough strategy enables a Converter to structure unions and subunions of given types.

A very common use case for cattrs is processing data created by other serialization libraries, such as JSON or msgpack.
These libraries are able to directly produce values of unions inherent to the format. For example, every JSON library can
differentiate between numbers, booleans, strings and null values since these values are represented differently in the wire
format. This strategy enables cattrs to offload the creation of these values to an underlying library and just validate the
final value. So, cattrs preconfigured JSON converters can handle the following type:

e bool | int | float | str | None

Continuing the JSON example, this strategy also enables structuring subsets of unions of these values. Accordingly, here
are some examples of subset unions that are also supported:

* bool | int
e int | str
e int | float | str
The strategy also supports types including one or more Literals of supported types. For example:

e Literal["admin", "user"] | int

36 Chapter 5. Strategies

https://mypy.readthedocs.io/en/stable/literal_types.html#literal-types

cattrs Documentation, Release 24.1.2

e Literal[True] | str | int | float

The strategy also supports NewTypes of these types. For example:

>>> from typing import NewType
>>> UserId = NewType ("UserId", int)

>>> converter.loads ("12", UserId)
12

Unions containing unsupported types can be handled if at least one union type is supported by the strategy; the supported
union types will be checked before the rest (referred to as the spillover) is handed over to the converter again.

For example, if A and B are arbitrary attrs classes, the union Literal [10] | A | B cannot be handled directly by
a JSON converter. However, the strategy will check if the value being structured matches Literal [10] (because this
type is supported) and, if not, will pass it back to the converter to be structured as 2 | B (where a different strategy can
handle it).

The strategy is designed to run in O(1) at structure time; it doesn’t depend on the size of the union and the ordering of
union members.

This strategy has been preapplied to the following preconfigured converters:
¢ BsonConverter
* CborZConverter
e JsonConverter
* MsgpackConverter
¢ MsgspecdsonConverter
e OrjsonConverter
* PyyamlConverter
e TomlkitConverter
e UjsonConverter

Added in version 23.2.0.

5.4. Union Passthrough 37

https://mypy.readthedocs.io/en/stable/more_types.html#newtypes

cattrs Documentation, Release 24.1.2

38 Chapter 5. Strategies

CHAPTER
SIX

RECIPES

This page contains a collection of recipes for custom un-/structuring mechanisms.

6.1 Switching Initializers

When structuring attrs classes, cattrs uses the classes’ ___init___ method to instantiate objects by default. In certain
situations, you might want to deviate from this behavior and use alternative initializers instead.

For example, consider the following Point class describing points in 2D space, which offers two classmethods for
alternative creation:

>>> import math
>>> from attrs import define

>>> @define
class Point:
"""A point in 2D space."""

x: float
y: float
@classmethod

def from_tuple(cls, coordinates: tuple[float, float]) -> "Point":
"""Create a point from a tuple of Cartesian coordinates.'"""
return Point (*coordinates)

@classmethod

def from_polar(cls, radius: float, angle: float) —-> "Point":
"""Create a point from its polar coordinates."""
return Point (radius * math.cos(angle), radius * math.sin (angle))

6.1.1 Selecting an Alternative Initializer

A simple way to statically set one of the classmethods as initializer is to register a structuring hook that holds a
reference to the respective callable:

>>> from inspect import signature
>>> from typing import Callable, TypedDict

>>> from cattrs import Converter
>>> from cattrs.dispatch import StructureHook

(continues on next page)

39

cattrs Documentation, Release 24.1.2

(continued from previous page)

>>> def signature_to_typed_dict (fn: Callable) -> type[TypedDict]:
"""Create a TypedDict reflecting a callable's signature."""

params = {p: t.annotation for p, t in signature (fn) .parameters.items () }
return TypedDict (f"{fn. name_ } args", params)
>>> def make_initializer_from(fn: Callable, conv: Converter) —-> StructureHook:

"""Return a Sstructuring hook from a given callable."""
td = signature_to_typed_dict (fn)

td_hook = conv.get_structure_hook (td)

return lambda v, fn (**td_hook (v, td))

Now, you can easily structure Points from the specified alternative representation:

>>> ¢ = Converter ()
>>> c.register_structure_hook (Point, make_initializer_from(Point.from_polar, c))

>>> p0 = Point (1.0, 0.0)
>>> pl = c.structure({"radius": 1.0, "angle": 0.0}, Point)
>>> assert p0 == pl

6.1.2 Dynamically Switching Between Initializers

In some cases, even more flexibility is required and the selection of the initializer must happen at runtime, requiring a
dynamic approach. A typical scenario would be when object structuring happens behind an API and you want to let the
user specify which representation of the object they wish to provide in their serialization string.

In such situations, the following hook factory can help you achieve your goal:

>>> from inspect import signature
>>> from typing import Callable, TypedDict

>>> from cattrs import Converter
>>> from cattrs.dispatch import StructureHook

>>> def signature_to_typed_dict (fn: Callable) -> type[TypedDict]:
"""Create a TypedDict reflecting a callable's signature.”"""
params = {p: t.annotation for p, t in signature (fn) .parameters.items () }
return TypedDict (f"{fn. name_ } args", params)

>>> T = TypeVar ("T")
>>> def make_initializer_selection_hook (
initializer_key: str,
converter: Converter,
) —> StructureHook:
"""Return a structuring hook that dynamically switches between initializers.""

def select_initializer_hook (specs: dict, cls: type[T]) -> T:

mmn

"""Deserialization with dynamic initializer selection.
If no initializer keyword is specified, use regular __init_
if initializer_key not in specs:

return converter.structure_attrs_fromdict (specs, cls)

(continues on next page)

40 Chapter 6. Recipes

cattrs Documentation, Release 24.1.2

Otherwise,
specs = specs.copy ()
initializer_name =
initializer =
td =
td_hook =

return initializer (**td_hook (specs,

getattr(cls,
signature_to_typed_dict (initializer)
converter.get_structure_hook (td)

(continued from previous page)

call the specified initializer with deserialized arguments

specs.pop (initializer_key)

initializer_name)

td))

return select_initializer_hook

Specifying the key that determines the initializer to be used now lets you dynamically select the classmethod as part

of the object specification itself:

>>> c = Converter ()

>>> c.register_structure_hook (Point,

—C))

>>> p0 = Point (1.0, 0.0)

>>> pl = c.structure({"initializer":
<~>Point)

>>> p2 = c.structure({"initializer":

>>> assert p0 == pl == p2

make_initializer_selection_hook ("initializer", .

"from_polar", "radius": 1.0, "angle": 0.0}, .

"from_tuple", "coordinates": (1.0, 0.0)}, Point)

6.1. Switching Initializers

41

cattrs Documentation, Release 24.1.2

42 Chapter 6. Recipes

CHAPTER
SEVEN

VALIDATION

cattrs has a detailed validation mode since version 22.1.0, and this mode is enabled by default. When running under
detailed validation, the structuring hooks are slightly slower but produce richer and more precise error messages. Un-
structuring hooks are not affected.

7.1 Detailed Validation

Added in version 22.1.0.

In detailed validation mode, any structuring errors will be grouped and raised together as a cattrs.
BaseValidationError, which is a PEP 654 ExceptionGroup. ExceptionGroups are special exceptions which
contain lists of other exceptions, which may themselves be other ExceptionGroups. In essence, ExceptionGroups are
trees of exceptions.

When structuring a class, cattrs will gather any exceptions on a field-by-field basis and raise them as a cattrs.
ClassValidationError, which is a subclass of BaseValidationError.

When structuring sequences and mappings, cattrs will gather any exceptions on a key- or index-basis and raise them as a
cattrs.IterableValidationError, which is asubclass of BaseValidationError.

The exceptions will also have their __notes___ attributes set, as per PEP 678, showing the field, key or index for each
inner exception.

A simple example involving a class containing a list and a dictionary:

@define

class Class:
a_list: list[int]
a_dict: dict[str, int]

>>> structure({"a_list": ["a"], "a_dict": {"str": "a"}}, Class)

+ Exception Group Traceback (most recent call last):

| File "<stdin>", line 1, in <module>

| File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 276, in.
—structure

| return self._structure_func.dispatch(cl) (obj, cl)

| File "<cattrs generated structure _ _main__.Class>", line 14, in structure_Class

| if errors: raise __ _c_cve('While structuring Class', errors, __cl)
| cattrs.errors.ClassValidationError: While structuring Class
-t 1
| Exception Group Traceback (most recent call last):
| File "<cattrs generated structure _ _main__ .Class>", line 5, in structure_Class
| res['a_list'] = __c_structure_a_list(o['a_ list'], __c_type_a_list)
\

File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 457, in _
(continues on next page)

43

https://www.python.org/dev/peps/pep-0654/
https://www.python.org/dev/peps/pep-0678/

cattrs Documentation, Release 24.1.2

(continued from previous page)

—structure_1list
| raise IterableValidationError (
| cattrs.errors.IterableValidationError: While structuring list[int]
| Structuring class Class (@ attribute a_list
+—t 1 ———
| Traceback (most recent call last):
\ File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 450, in _
<»structure_list
| res.append (handler (e, elem_type))
\ File "/Users/tintvrtkovic/pg/cattrs/src/cattr/converters.py", line 375, in
—structure_call
| return cl (obj)
| ValueError: invalid literal for int () with base 10: 'a'
| Structuring list[int] @ index O

o
——_— 2 ——————
| Exception Group Traceback (most recent call last):
| File "<cattrs generated structure _ _main__.Class>", line 10, in structure_
—~Class
| res['a_dict'] = __c_structure_a_dict(o['a_dict'], __c_type_a_dict)
| File "", line 17, in structure_mapping

| cattrs.errors.IterableValidationError: While structuring dict
| Structuring class Class @ attribute a_dict
ot ——— 1 ————

| Traceback (most recent call last):

\ File "", line 5, in structure_mapping

| ValueError: invalid literal for int () with base 10: 'a'
\

Structuring mapping value @ key 'str'

7.1.1 Transforming Exceptions into Error Messages

Added in version 23.1.0.

ExceptionGroup stack traces are useful while developing, but sometimes a more compact representation of validation
errors is required. cattrs provides a helper function, cattrs.transform_error (), which transforms validation
errors into lists of error messages.

The example from the previous paragraph produces the following error messages:

>>> from cattrs import structure, transform_error

>>> try:
structure ({"a_list": ["a"], "a_dict": {"str": "a"}}, Class)
except Exception as exc:
print (transform_error (exc))
['"invalid value for type, expected int @ $.a_list[0]', "invalid value for type, .
—expected int @ $.a_dict['str']"]

A small number of built-in exceptions are converted into error messages automatically. This can be further customized
by providing cattrs. transform error () with a function that it can use to turn individual, non-ExceptionGroup
exceptions into error messages. A useful pattern is wrapping the default, cattrs.v. format_exception () func-
tion.

44 Chapter 7. Validation

cattrs Documentation, Release 24.1.2

>>> from cattrs.v import format_exception

>>> def my_exception_formatter (exc: BaseException, type) —-> str:
if isinstance (exc, MyInterestingException) :
return "My error message"
return format_exception(exc, type)

>>> try:
structure (..., Class)
except Exception as exc:
print (transform_error (exc, format_exception=my_exception_formatter))

If even more customization is required, cattrs.transform_error () can be copied over into your codebase and
adjusted as needed.

7.2 Non-detailed Validation

Non-detailed validation can be enabled by initializing any of the converters with detailed_validation=False.
In this mode, any errors during un/structuring will bubble up directly as soon as they happen.

7.2. Non-detailed Validation 45

cattrs Documentation, Release 24.1.2

46 Chapter 7. Validation

CHAPTER
EIGHT

PRECONFIGURED CONVERTERS

The cattrs.preconf package contains factories for preconfigured converters, specifically adjusted for particular
serialization libraries.

For example, to get a converter configured for BSON:

>>> from cattrs.preconf.bson import make_converter

>>> converter = make_converter() # Takes the same parameters as the " cattrs.Converter'

Converters obtained this way can be customized further, just like any other converter.

These converters support all default hooks and the following additional classes and type annotations, both for structuring
and unstructuring:

e datetime.datetime, datetime.date

Added in version 22.1.0: All preconf converters now have 1oads and dumps methods, which combine un/structuring
and the de/serialization logic from their underlying libraries.

>>> from cattrs.preconf.json import make_converter
>>> converter = make_converter ()
>>> (@define

class Test:

a: int

>>> converter.dumps (Test (1))
l{llall: 1}!

Particular libraries may have additional constraints documented below.

Third-party libraries can be specified as optional (extra) dependencies on cattrs during installation. Optional install targets
should match the name of the cattrs. preconst modules.

Using pip
$ pip install cattrs[ujson]

Using pdm
pdm add cattrs|[orjson]

v 3*

Using poetry
$ poetry add —--extras tomlkit cattrs

47

cattrs Documentation, Release 24.1.2

8.1 Standard Library json

Found at cattrs.preconf. json.

Bytes are serialized as base 85 strings. Counters are serialized as dictionaries. Sets are serialized as lists, and deserialized
back into sets. datetime s and date s are serialized as ISO 8601 strings.

8.2 orjson

Found at cattrs.preconf.orjson.

Bytes are un/structured as base 85 strings. Sets are unstructured into lists, and structured back into sets. datetime s
and date s are passed through to be unstructured into RFC 3339 by orjson itself. Typed named tuples are unstructured
into ordinary tuples, and then into JSON arrays by orjson.

orjson doesn’t support integers less than -9223372036854775808, and greater than 9223372036854775807. orjson only
supports mappings with string keys so mappings will have their keys stringified before serialization, and destringified
during deserialization.

8.3 msgspec

Found at cattrs.preconf.msgspec. Only JSON functionality is currently available, other formats supported by
msgspec to follow in the future.

msgspec structs are supported, but not composable - a struct will be handed over to msgspec directly, and msgspec will
handle and all of its fields, recursively. catfrs may get more sophisticated handling of structs in the future.

msgspec strict mode is used by default. This can be customized by changing the encoder attribute on the converter.

What cattrs calls unstructuring and structuring, msgspec calls to_builtins and convert. What cattrs refers to as
dumping and loading, msgspec refers to as encoding and decoding.

Compatibility notes:
* Bytes are un/structured as base 64 strings directly by msgspec itself.
» msgspec encodes special float values (NaN, Inf, -Inf)asnull.
e datetime sand date s are passed through to be unstructured into RFC 3339 by msgspec itself.

* atrs classes, dataclasses and sequences are handled directly by msgspec if possible, otherwise by the normal cattrs
machinery. This means it’s possible the validation errors produced may be msgspec validation errors instead of
cattrs validation errors.

This converter supports get_ loads_hook () and get_dumps_hook (). These are factories for dumping and load-
ing functions (as opposed to unstructuring and structuring); the hooks returned by this may be further optimized to offload
as much work as possible to msgspec.

>>> from cattrs.preconf.msgspec import make_converter

>>> (@define
class Test:

a: int
>>> converter = make_converter ()
>>> dumps = converter.get_dumps_hook (A)

(continues on next page)

48 Chapter 8. Preconfigured Converters

https://jcristharif.com/msgspec/structs.html
https://jcristharif.com/msgspec/usage.html#strict-vs-lax-mode
https://jcristharif.com/msgspec/converters.html
https://jcristharif.com/msgspec/usage.html
https://jcristharif.com/msgspec/supported-types.html#float

cattrs Documentation, Release 24.1.2

(continued from previous page)

>>> dumps (Test (1)) # Will use msgspec directly.
bV{"alel}l

Due to its complexity, this converter is currently provisional and may slightly change as the best integration patterns are
discovered.

msgspec doesn’t support PyPy.
Added in version 24.1.0.

8.4 ujson

Found at cattrs.preconf.ujson.

Bytes are serialized as base 85 strings. Sets are serialized as lists, and deserialized back into sets. datetime s and
date s are serialized as ISO 8601 strings.

ujson doesn’t support integers less than -9223372036854775808, and greater than 9223372036854775807, nor does it
support float ('inf').

8.5 msgpack

Found at cattrs.preconf.msgpack.

Sets are serialized as lists, and deserialized back into sets. datetime s are serialized as UNIX timestamp float values.
date s are serialized as midnight-aligned UNIX timestamp float values.

msgpack doesn’t support integers less than -9223372036854775808, and greater than 18446744073709551615.

When parsing msgpack data from bytes, the library needs to be passed st rict_map_key=False to get the full range
of compatibility.

8.6 cbor2

Found at cattrs.preconf.chor?.

cbor2 implements a fully featured CBOR encoder with several extensions for handling shared references, big integers,
rational numbers and so on.

Sets are serialized and deserialized to sets. Tuples are serialized as lists.

datetime s are serialized as a text string by default (CBOR Tag 0). Use keyword argument date-
time_as_timestamp=True toencode as UNIX timestamp integer/float (CBOR Tag 1) note: this replaces timezone
information as UTC.

date s are serialized as ISO 8601 strings.
Use keyword argument canonical=True for efficient encoding to the smallest binary output.

Floats can be forced to smaller output by casting to lower-precision formats by casting to numpy floats (and back to
Python floats). Example: float (np.float32 (value)) or float (np.floatl6 (value))

Added in version 23.1.0.

8.4. ujson 49

cattrs Documentation, Release 24.1.2

8.7 bson

Found at cattrs.preconf.bson. Tested against the bson module bundled with the pymongo library, not the stan-
dalone PyPI bson package.

Sets are serialized as lists, and deserialized back into sets.

bson doesn’t support integers less than -9223372036854775808 or greater than 9223372036854775807 (64-bit signed).
bson does not support null bytes in mapping keys. bson only supports mappings with string keys so mappings will have
their keys stringified before serialization, and destringified during deserialization. The bson datetime representation doesn’t
support microsecond accuracy. date s are serialized as ISO 8601 strings.

When encoding and decoding, the library needs to be passed codec_options=bson.
CodecOptions (tz_aware=True) to get the full range of compatibility.

8.8 pyyaml

Found at cattrs.preconf.pyyaml.

Frozensets are serialized as lists, and deserialized back into frozensets. date s are serialized as ISO 8601 strings. Typed
named tuples are unstructured into ordinary tuples, and then into YAML arrays by pyyaml.

8.9 tomlkit

Found at cattrs.preconf.tomlkit.

Bytes are serialized as base 85 strings. Sets are serialized as lists, and deserialized back into sets. Tuples are serialized as
lists, and deserialized back into tuples. fomlkit only supports mappings with string keys so mappings will have their keys
stringified before serialization, and destringified during deserialization. date s are serialized as ISO 8601 strings.

50 Chapter 8. Preconfigured Converters

CHAPTER
NINE

HANDLING UNIONS

cattrs is able to handle simple unions of attrs classes and dataclasses automatically. More complex cases require converter
customization (since there are many ways of handling unions).

cattrs also comes with a number of optional strategies to help handle unions:
* tagged unions strategy mentioned below

* union passthrough strategy, which is preapplied to all the preconfigured converters

9.1 Default Union Strategy

For convenience, cattrs includes a default union structuring strategy which is a little more opinionated.

Given a union of several attrs classes and/or dataclasses, the default union strategy will attempt to handle it in several
ways.

First, it will look for Literal fields. If all members of the union contain a literal field, cattrs will generate a disam-
biguation function based on the field.

from typing import Literal

@define
class ClassA:
field_one: Literal["one"]

@define
class ClassB:
field_one: Literal["two"] = "two"
In this case, a payload containing {"field_one": "one"} will produce an instance of ClassA.

Note: The following snippet can be used to disable the use of literal fields, restoring legacy behavior.

from functools import partial
from cattrs.disambiguators import is_supported_union

converter.register_structure_hook_factory(
is_supported_union,
partial (converter._gen_attrs_union_structure, use_literals=False),

If there are no appropriate fields, the strategy will examine the classes for unique required fields.

51

cattrs Documentation, Release 24.1.2

So, given a union of ClassA and ClassB:

@define
class ClassA:
field_one: str
field_with_default: str = "a default"”

@define
class ClassB:
field_two: str

the strategy will determine that if a payload contains the key field_one it should be handled as ClassA, and if
it contains the key field_two it should be handled as ClassB. The field field_with_default will not be
considered since it has a default value, so it gets treated as optional.

Changed in version 23.2.0: Literals can now be potentially used to disambiguate.

Changed in version 24.1.0: Dataclasses are now supported in addition to attrs classes.

9.2 Unstructuring Unions with Extra Metadata

Note: cattrs comes with the ragged unions strategy for handling this exact use-case since version 23.1. The example
below has been left here for educational purposes, but you should prefer the strategy.

Let’s assume a simple scenario of two classes, ClassA and ClassB, both of which have no distinct fields and so cannot
be used automatically with cattrs.

@define
class ClassA:
a_string: str

@define
class ClassB:
a_string: str

A naive approach to unstructuring either of these would yield identical dictionaries, and not enough information to re-
structure the classes.

>>> converter.unstructure (ClassA("test"))
{'a_string': 'test'} # Is this ClassA or ClassB? Who knows!

What we can do is ensure some extra information is present in the unstructured data, and then use that information to
help structure later.

First, we register an unstructure hook for the Union[ClassA, ClassB] type.

>>> converter.register_unstructure_hook (
Union[ClassA, ClassB],
lambda o: {"_type": type(o)._ _name__, **converter.unstructure (o) }
)
>>> converter.unstructure (ClassA("test"), unstructure_as=Union[ClassA, ClassB])
{'_type': 'ClassA', 'a_string': 'test'}

Note that when unstructuring, we had to provide the unstructure_as parameter or cattrs would have just applied
the usual unstructuring rules to ClassA, instead of our special union hook.

52 Chapter 9. Handling Unions

cattrs Documentation, Release 24.1.2

Now that the unstructured data contains some information, we can create a structuring hook to put it to use:

>>> converter.register_structure_hook (
Union[ClassA, ClassB],

. lambda o, _: converter.structure (o, ClassA if o["_type"] == "ClassA" else.
—ClassB)

)
>>> converter.structure ({"_type": "ClassA", "a_string": "test"}, Union[ClassA, .
—ClassB])

ClassA(a_string='test")

9.2. Unstructuring Unions with Extra Metadata 53

cattrs Documentation, Release 24.1.2

54 Chapter 9. Handling Unions

CHAPTER
TEN

ADVANCED EXAMPLES

This section covers advanced use examples of cattrs features.

10.1 Using Factory Hooks

For this example, let’s assume you have some attrs classes with snake case attributes, and you want to un/structure them
as camel case.

Warning: A simpler and better approach to this problem is to simply make your class attributes camel case. However,
this is a good example of the power of hook factories and catfrs’ composition-based design.

Here’s our simple data model:

@define

class Inner:
a_snake_case_int: int
a_snake_case_float: float
a_snake_case_str: str

@define
class Outer:
a_snake_case_inner: Inner

Let’s examine our options one by one, starting with the simplest: writing manual un/structuring hooks.

We just write the code by hand and register it:

def unstructure_inner (inner) :
return {

"aSnakeCaselInt": inner.a_snake_case_int,
"aSnakeCaseFloat": inner.a_snake_case_float,
"aSnakeCaseStr": inner.a_snake_case_str

>>> converter.register_unstructure_hook (Inner, unstructure_inner)

(Let’s skip the other unstructure hook and 2 structure hooks due to verbosity.)

This will get us where we want to go, but the drawbacks are immediately obvious: we’d need to write a ton of code
ourselves, wasting effort, increasing our maintenance burden and risking bugs. Obviously this won’t do.

55

cattrs Documentation, Release 24.1.2

Why write code when we can write code to write code for us? In this case this code has already been written for you.
cattrs contains a module, cat t rs. gen, with functions to automatically generate hooks exactly like this. These functions
also take parameters to customize the generated hooks.

We can generate and register the renaming hooks we need:

>>> from cattrs.gen import make_dict_unstructure_fn, override

>>> converter.register_unstructure_hook (

Inner,

make_dict_unstructure_fn(
Inner,
converter,
a_snake_case_int=override (rename="aSnakeCaseInt"),
a_snake_case_float=override (rename="aSnakeCaseFloat"),
a_snake_case_str=override (rename="aSnakeCaseStr"),

(Again skipping the other hooks due to verbosity.)

This is still too verbose and manual for our tastes, so let’s automate it further. We need a way to convert snake case
identifiers to camel case, so let’s grab one from Stack Overflow:

def to_camel_case (snake_str: str) —-> str:
components = snake_str.split("_")
return components[0] + "".join(x.title() for x in components[l:])

We can combine this with attrs. fields to save us some typing:

from attrs import fields
from cattrs.gen import make_dict_unstructure_fn, override

converter.register_unstructure_hook (
Inner,
make_dict_unstructure_fn(
Inner,
converter,
**{a.name: override (rename=to_camel_ case (a.name)) for a in fields (Inner) }

converter.register_unstructure_hook (
Outer,
make_dict_unstructure_fn(
Outer,
converter,
**{a.name: override (rename=to_camel_ case (a.name)) for a in fields (Outer) }

(Skipping the structuring hooks due to verbosity.)

Now we’re getting somewhere, but we still need to do this for each class separately. The final step is using hook factories
instead of hooks directly.

Hook factories are functions that return hooks. They are also registered using predicates instead of being attached to
classes directly, like normal un/structure hooks. Predicates are functions that given a type return a boolean whether they
handle it.

56 Chapter 10. Advanced Examples

https://www.attrs.org/en/stable/api.html#attrs.fields

cattrs Documentation, Release 24.1.2

We want our hook factories to trigger for all attrs classes, so we need a predicate to recognize whether a type is an attrs
class. Luckily, attrs comes with att rs. has, which is exactly this.

As the final step, we can combine all of this into two hook factories:

from attrs import has, fields
from cattrs import Converter
from cattrs.gen import make_dict_unstructure_fn, make_dict_structure_fn, override

converter = Converter ()
def to_camel_case(snake_str: str) -> str:
components = snake_str.split("_")
return components|[0] + "".join(x.title() for x in components[l:])

def to_camel_case_unstructure (cls):
return make_dict_unstructure_fn(
cls,
converter,
**{
a.name: override (rename=to_camel_case (a.name))
for a in fields (cls)

def to_camel_case_structure (cls) :
return make_dict_structure_fn(
cls,
converter,
**{
a.name: override (rename=to_camel_case (a.name))
for a in fields (cls)

converter.register_unstructure_hook_factory (
has, to_camel_case_unstructure

)

converter.register_structure_hook_factory (
has, to_camel_case_structure

The converter instance will now un/structure every attrs class to camel case. Nothing has been omitted from this final
example; it’s complete.

10.2 Using Fallback Key Names

Sometimes when structuring data, the input data may be in multiple formats that need to be converted into a common
attribute.

Consider an example where a data store creates a new schema version and renames a key (ie, {'old_field"':
'valuel'}invl becomes { 'new_field': 'valuel'} inv2), while also leaving existing records in the system
with the V1 schema. Both keys should convert to the same field.

Here, builtin customizations such as rename are insufficient - cattrs cannot structure both o1d_fieldand new_field
into a single field using rename, at least not on the same converter.

10.2. Using Fallback Key Names 57

https://www.attrs.org/en/stable/api.html#attrs.has

cattrs Documentation, Release 24.1.2

In order to support both fields, you can apply a little preprocessing to the default cattrs structuring hooks. One approach
is to write the following decorator and apply it to your class.

from attrs import define
from cattrs import Converter
from cattrs.gen import make_dict_structure_fn

converter = Converter ()

def fallback_field(
converter_arg: Converter,
old_to_new_field: dict[str, str]

def decorator(cls):
struct = make_dict_structure_fn(cls, converter_arg)

def structure(d, cl):
for k, v in old_to_new_field.items () :
if k in d:
div] = d[k]
return struct (d, cl)
converter_arg.register_structure_hook (cls, structure)

return cls

return decorator

@fallback_field (converter, {"old_field": "new_field"})
@define
class MyInternalAttr:

new_field: str

cattrs will now structure both key names into new_field on your class.

converter.structure ({"new_field": "foo"}, MyInternalAttr)
converter.structure ({"old_field": "foo"}, MyInternalAttr)

58 Chapter 10. Advanced Examples

CHAPTER
ELEVEN

MIGRATIONS

cattrs sometimes changes in backwards-incompatible ways. This page contains guidance for changes and workarounds
for restoring legacy behavior.

11.1 24.2.0

11.1.1 The default structure hook fallback factory

The default structure hook fallback factory was changed to more eagerly raise errors for missing hooks.

The old behavior can be restored by explicitly passing in the old hook fallback factory when instantiating the converter.

>>> from cattrs.fns import raise_error

>>> ¢ = Converter (structure_fallback_factory=lambda _: raise_error)
Or
>>> ¢ = BaseConverter (structure_fallback_factory=lambda _: raise_error)

59

cattrs Documentation, Release 24.1.2

60 Chapter 11. Migrations

CHAPTER
TWELVE

CONVERTERS IN-DEPTH

Converters are registries of rules cattrs uses to perform function composition and generate its un/structuring functions.
Currently, a converter contains the following state:
e aregistry of unstructure hooks, backed by a singledispatch and a FunctionDispatch, wrapped in a cache.

* a registry of structure hooks, backed by a different singledispatch and FunctionDispatch, and a different
cache.

e adetailed_validation flag (defaulting to true), determining whether the converter uses detailed validation.
e areference to an unstructuring strategy (either AS_DICT or AS_TUPLE).

e aprefer_attrib_converters flag (defaulting to false), determining whether to favor attrs converters over
normal cattrs machinery when structuring attrs classes

e a dict_factory callable, a legacy parameter used for creating dicts when dumping attrs classes using
AS_DICT.

Converters may be cloned using the Converter. copy () method. The new copy may be changed through the copy
arguments, but will retain all manually registered hooks from the original.

12.1 Customizing Collection Unstructuring

Important: This feature is supported for Python 3.9 and later.

Tip: See Customizing Collections for a more modern and more powerful way of customizing collection handling.

Overriding collection unstructuring in a generic way can be a very useful feature. A common example is using a JSON
library that doesn’t support sets, but expects lists and tuples instead.

Using ordinary unstructuring hooks for this is unwieldy due to the semantics of singledispatch; in other words, you’d need
to register hooks for all specific types of set you're using (set [int], set [float], set [str]...), which is not
useful.

Function-based hooks can be used instead, but come with their own set of challenges - they’re complicated to write
efficiently.

The Converter supports easy customizations of collection unstructuring using its un-
struct_collection_overrides parameter. For example, to unstructure all sets into lists, use the following:

61

https://docs.python.org/3/library/functools.html#functools.singledispatch
https://docs.python.org/3/library/functools.html#functools.cache
https://docs.python.org/3/library/functools.html#functools.singledispatch

cattrs Documentation, Release 24.1.2

>>> from collections.abc import Set
>>> converter = cattrs.Converter (unstruct_collection_overrides={Set: list})

>>> converter.unstructure ({1, 2, 31})
(1, 2, 3]

Going even further, the Converter contains heuristics to support the following Python types, in order of decreasing
generality:

* typing.Sequence, typing.MutableSequence, 1list, deque, tuple
* typing.Set, frozenset, typing.MutableSet, set

* typing.Mapping, typing.MutableMapping, dict, defaultdict, collections.
OrderedDict, collections.Counter

For example, if you override the unstructure type for Sequence, but not for MutableSequence, 1ist or tuple,
the override will also affect those types. An easy way to remember the rule:

* all MutableSequence s are Sequence s, so the override will apply
e all 1ist sare MutableSequence s, so the override will apply
e all tuple s are Sequence s, so the override will apply

If, however, you override only MutableSequence, fields annotated as Sequence will not be affected (since not
all sequences are mutable sequences), and fields annotated as tuples will not be affected (since tuples are not mutable
sequences in the first place).

Similar logic applies to the set and mapping hierarchies.

Make sure you’re using the types from collections.abc on Python 3.9+, and from typing on older Python
versions.

12.2 Fallback Hook Factories

By default, when a converter cannot handle a type it will:
¢ when unstructuring, pass the value through unchanged

e when structuring, raise a cattrs.errors. StructureHandlerNotFoundError asking the user to add
configuration

These behaviors can be customized by providing custom ook factories when creating the converter.

>>> from pickle import dumps

>>> class Unsupported:
"""An artisinal (non-attrs) class, unsupported by default."""

>>> converter = Converter (unstructure_fallback_factory=lambda _: dumps)

>>> instance = Unsupported()

>>> converter.unstructure (instance)
b'\x80\x04\x95\x18\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__ \x94\x8c\x04Test\x94\
—x93\x94)\x81\x94."

This also enables converters to be chained.

62 Chapter 12. Converters In-Depth

cattrs Documentation, Release 24.1.2

>>> parent = Converter ()

>>> child = Converter (
unstructure_fallback_factory=parent.get_unstructure_hook,
structure_fallback_factory=parent.get_structure_hook,

Added in version 23.2.0.

12.3 cattrs.Converter

The Converter is a converter variant that automatically generates, compiles and caches specialized structuring and
unstructuring hooks for attrs classes, dataclasses and TypedDicts.

Converter differs from the cattrs.BaseConverter in the following ways:
* structuring and unstructuring of attrs classes is slower the first time, but faster every subsequent time
e structuring and unstructuring can be customized
* support for attrs classes with PEP563 (postponed) annotations
* support for generic attrs classes
* support for easy overriding collection unstructuring

The Converter used to be called GenConverter, and that alias is still present for backwards compatibility.

12.4 cattrs.BaseConverter

The BaseConverter is a simpler and slower converter variant. It does no code generation, so it may be faster on first-
use which can be useful in specific cases, like CLI applications where startup time is more important than throughput.

12.3. cattrs.Converter 63

cattrs Documentation, Release 24.1.2

64 Chapter 12. Converters In-Depth

CHAPTER
THIRTEEN

13.1 cattrs package

cattrs.structure (0bj, cl)
Convert unstructured Python data structures to structured data.

Parameters
* obj (Any)
* cl(typelT])

Return type
T

cattrs.unstructure (obj, unstructure_as=None)

Parameters
* obj (Any)
* unstructure_as (Any)

Return type
Any

cattrs.get_structure_hook (type, cache_result=True)

Get the structure hook for the given type.

This hook can be manually called, or composed with other functions and re-registered.

If no hook is registered, the converter structure fallback factory will be used to produce one.

Parameters
* cache — Whether to cache the returned hook.
* type (4ny)
* cache_result (bool)

Return type
Callable[[Any, Any], Any]

Added in version 24.1.0.

CATTRS

65

cattrs Documentation, Release 24.1.2

cattrs.get_unstructure_hook (type, cache_result=True)

Get the unstructure hook for the given type.
This hook can be manually called, or composed with other functions and re-registered.
If no hook is registered, the converter unstructure fallback factory will be used to produce one.
Parameters
* cache — Whether to cache the returned hook.
* type (Any)
¢ cache_result (bool)

Return type
Callable[[Any], Any]

Added in version 24.1.0.

cattrs.register_structure_hook_func (check_func, func)

Register a class-to-primitive converter function for a class, using a function to check if it’s a match.
Parameters
e check_func (Callable[[Any], bool])
e func (Callable[[Any, Any], Any])

Return type
None

cattrs.register_structure_hook (cl, func=None)

Register a primitive-to-class converter function for a type.
The converter function should take two arguments:

* a Python object to be converted,

* the type to convert to

and return the instance of the class. The type may seem redundant, but is sometimes needed (for example, when
dealing with generic classes).

This method may be used as a decorator. In this case, the decorated hook must have a return type annotation, and
this annotation will be used as the type for the hook.

Changed in version 24.1.0: This method may now be used as a decorator.
Parameters
* cl(Any)
e func (Callable[[Any, Any], Any] | None)

Return type
None

cattrs.register_unstructure_hook_func (check_func, func)

Register a class-to-primitive converter function for a class, using a function to check if it’s a match.
Parameters
e check_func (Callable[[Any], bool])

e func (Callable[[Any], Any])

66 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

Return type
None

cattrs.register_unstructure_hook (cls=None, func=None)

Register a class-to-primitive converter function for a class.
The converter function should take an instance of the class and return its Python equivalent.

May also be used as a decorator. When used as a decorator, the first argument annotation from the decorated
function will be used as the type to register the hook for.

Changed in version 24.1.0: This method may now be used as a decorator.
Parameters
* cls (Any)
e func (UnstructureHook | None)

Return type
Callable[[UnstructureHook]] | None

cattrs.structure_attrs_fromdict (0bj, cl)

Instantiate an attrs class from a mapping (dict).
Parameters
* obj (Mapping([str, Any])
* cl(typelT])

Return type
T

cattrs.structure_attrs_fromtuple (obj, cl)

Load an attrs class from a sequence (tuple).
Parameters
e obj (tuple[Any, ...])
* cl(typelT])

Return type
T

cattrs.global_converter: Final = <cattrs.converters.Converter object>

The global converter. Prefer creating your own if customizations are required.

class cattrs.BaseConverter (dict_factory=<class 'dict>, unstruct_strat=UnstructureStrategy. AS_DICT,
prefer_attrib_converters=False, detailed_validation=True,
unstructure_fallback_factory=<function BaseConverter.<lambda>>,
structure_fallback_factory=<function BaseConverter.<lambda>>)

Bases: object
Converts between structured and unstructured data.
Parameters

* detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

* unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

13.1. cattrs package 67

cattrs Documentation, Release 24.1.2

e structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

e dict_factory (Callable[[], Any])
* unstruct_strat (UnstructureStrateqgy)
* prefer_attrib_converters (bool)
Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

detailed_validation
unstructure (0bj, unstructure_as=None)

Parameters
¢ obj (Any)
* unstructure_as (Any)

Return type
Any

property unstruct_strat: UnstructureStrategy

The default way of unstructuring attrs classes.

register_unstructure_hook (cis: UnstructureHookT) — UnstructureHookT
register_unstructure_hook (cis: Any, func: UnstructureHook) — None

Register a class-to-primitive converter function for a class.
The converter function should take an instance of the class and return its Python equivalent.

May also be used as a decorator. When used as a decorator, the first argument annotation from the decorated
function will be used as the type to register the hook for.

Changed in version 24.1.0: This method may now be used as a decorator.

register_unstructure_hook_func (check_func, func)

Register a class-to-primitive converter function for a class, using a function to check if it’s a match.
Parameters
e check_func (Callable[[Any], bool])
e func (Callable[[Any], Any])

Return type
None

register_ unstructure_hook_factory (predicate: Predicate) —
Callable[[AnyUnstructureHookFactoryBase],
AnyUnstructureHookFactoryBase]

register_unstructure_hook_factory (predicate: Predicate, factory: UnstructureHookFactory) —
UnstructureHookFactory

68 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

register_unstructure_hook_factory (predicate: Predicate, factory:
ExtendedUnstructureHookFactory[BaseConverter]) —
ExtendedUnstructureHookFactory[BaseConverter]

Register a hook factory for a given predicate.

The hook factory may expose an additional required parameter. In this case, the current converter will be
provided to the hook factory as that parameter.

May also be used as a decorator.
Parameters

* predicate - A function that, given a type, returns whether the factory can produce a hook
for that type.

¢ factory - A callable that, given a type, produces an unstructuring hook for that type. This
unstructuring hook will be cached.

Changed in version 24.1.0: This method may now be used as a decorator. The factory may also receive the
converter as a second, required argument.

get_unstructure_hook (fype, cache_result=True)
Get the unstructure hook for the given type.

This hook can be manually called, or composed with other functions and re-registered.
If no hook is registered, the converter unstructure fallback factory will be used to produce one.
Parameters
* cache — Whether to cache the returned hook.
* type (4ny)
* cache_result (bool)

Return type
Callable[[Any], Any]

Added in version 24.1.0.

register_structure_hook (cl: StructureHookT) — StructureHookT
register_structure_hook (cl: Any, func: StructureHook) — None

Register a primitive-to-class converter function for a type.
The converter function should take two arguments:

* a Python object to be converted,

* the type to convert to

and return the instance of the class. The type may seem redundant, but is sometimes needed (for example,
when dealing with generic classes).

This method may be used as a decorator. In this case, the decorated hook must have a return type annotation,
and this annotation will be used as the type for the hook.

Changed in version 24.1.0: This method may now be used as a decorator.

register_structure_hook_func (check_func, func)

Register a class-to-primitive converter function for a class, using a function to check if it’s a match.
Parameters

e check_func (Callable[[Any], bool])

13.1. cattrs package 69

cattrs Documentation, Release 24.1.2

e func (Callable[[Any, Any], Any])

Return type
None

register_structure_hook_factory (predicate: Predicate) —
Callable[[AnyStructureHookFactoryBase],
AnyStructureHookFactoryBase]

register_structure_hook_factory (predicate: Predicate, factory: StructureHookFactory) —
StructureHookFactory

register_structure_hook_factory (predicate: Predicate, factory:
ExtendedStructureHookFactory[BaseConverter]) —
ExtendedStructureHookFactory[BaseConverter]

Register a hook factory for a given predicate.

The hook factory may expose an additional required parameter. In this case, the current converter will be

provided to the hook factory as that parameter.
May also be used as a decorator.

Parameters

¢ predicate — A function that, given a type, returns whether the factory can produce a hook

for that type.

e factory — A callable that, given a type, produces a structuring hook for that type. This

structuring hook will be cached.

Changed in version 24.1.0: This method may now be used as a decorator. The factory may also receive the

converter as a second, required argument.

structure (0bj, cl)

Convert unstructured Python data structures to structured data.
Parameters
* obj (Any)
* cl(typelT])

Return type
T

get_structure_hook (type, cache_result=True)
Get the structure hook for the given type.

This hook can be manually called, or composed with other functions and re-registered.
If no hook is registered, the converter structure fallback factory will be used to produce one.
Parameters
* cache — Whether to cache the returned hook.
* type (Any)
* cache_result (bool)

Return type
Callable[[Any, Any], Any]

Added in version 24.1.0.

70 Chapter 13.

cattrs

cattrs Documentation, Release 24.1.2

unstructure_attrs_asdict (0bj)

Our version of attrs.asdict, so we can call back to us.

Parameters
obj (Any)

Return type
dict[str, Any]

unstructure_attrs_astuple (0bj)

Our version of attrs.astuple, so we can call back to us.

Parameters
obj (Any)

Return type
tuple[Any, ...]

structure_attrs_fromtuple (0bj, cl)

Load an attrs class from a sequence (tuple).
Parameters
e obj (tuple[Any, ...])
* cl(typelT])

Return type
T

structure_attrs_fromdict (obj, cl)

Instantiate an attrs class from a mapping (dict).
Parameters
e obj (Mapping[str, Any])
* cl(typelT])

Return type
T

copy (dict_factory=None, unstruct_strat=None, prefer_attrib_converters=None, detailed_validation=None)

Create a copy of the converter, keeping all existing custom hooks.
Parameters

¢ detailed_validation (bool | None)-— Whether to use a slightly slower mode for
detailed validation errors.

* dict_factory (Callable[[], Any] | None)
e unstruct_strat (UnstructureStrategy | None)
* prefer_attrib_converters (bool | None)

Return type
BaseConverter

class cattrs.Converter (dict_factory=<class 'dict’>, unstruct_strat=UnstructureStrategy.AS_DICT,
omit_if _default=False, forbid_extra_keys=False, type_overrides={},
unstruct_collection_overrides={}, prefer_attrib_converters=False,
detailed_validation="True, unstructure_fallback_factory=<function
Converter.<lambda>>, structure_fallback_factory=<function
Converter.<lambda>>)

13.1. cattrs package 4

cattrs Documentation, Release 24.1.2

Bases: BaseConverter
A converter which generates specialized un/structuring functions.
Parameters

* detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

* unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

e structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

e dict_factory (Callable[[], Any])
* unstruct_strat (UnstructureStrateqgy)
* omit_if_ default (bool)
* forbid_extra_keys (bool)
* type_overrides (Mapping [type, AttributeOverride])
* unstruct_collection_overrides (Mapping[type, Callable])
* prefer_attrib_converters (bool)
Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_ factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

omit_if_ default
forbid_extra_keys
type_overrides

register_unstructure_hook_factory (predicate: Predicate) —
Callable[[AnyUnstructureHookFactory],
AnyUnstructureHookFactory]

register_unstructure_hook_factory (predicate: Predicate, factory: UnstructureHookFactory) —
UnstructureHookFactory

register_ unstructure_hook_factory (predicate: Predicate, factory:
ExtendedUnstructureHookFactory[Converter]) —
ExtendedUnstructureHookFactory[Converter]

Register a hook factory for a given predicate.

The hook factory may expose an additional required parameter. In this case, the current converter will be
provided to the hook factory as that parameter.

May also be used as a decorator.
Parameters

* predicate — A function that, given a type, returns whether the factory can produce a hook
for that type.

72 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

¢ factory - A callable that, given a type, produces an unstructuring hook for that type. This
unstructuring hook will be cached.

Changed in version 24.1.0: This method may now be used as a decorator. The factory may also receive the
converter as a second, required argument.

register_structure_hook_factory (predicate: Predicate) — Callable[[AnyStructureHookFactory],
AnyStructureHookFactory]

register_structure_hook_factory (predicate: Predicate, factory: StructureHookFactory) —
StructureHookFactory

register_structure_hook_factory (predicate: Predicate, factory:
ExtendedStructureHookFactory[Converter]) —
ExtendedStructureHookFactory[Converter]

Register a hook factory for a given predicate.

The hook factory may expose an additional required parameter. In this case, the current converter will be
provided to the hook factory as that parameter.

May also be used as a decorator.
Parameters

¢ predicate — A function that, given a type, returns whether the factory can produce a hook
for that type.

e factory — A callable that, given a type, produces a structuring hook for that type. This
structuring hook will be cached.

Changed in version 24.1.0: This method may now be used as a decorator. The factory may also receive the
converter as a second, required argument.

get_structure_newtype (fype)

Parameters
type (type[T])

Return type
Callable[[Any, Any], T]

gen_unstructure_annotated (fype)
gen_structure_annotated (fype)
A hook factory for annotated types.

Return type
Callable

gen_unstructure_typeddict (cl)

Generate a TypedDict unstructure function.
Also apply converter-scored modifications.

Parameters
cl (Any)

Return type
Callable[[dict], dict]

gen_unstructure_attrs_fromdict (cl)

Parameters
cl(typelT])

13.1. cattrs package 73

cattrs Documentation, Release 24.1.2

Return type
Callable[[T1], dict[str, Any]]

gen_unstructure_optional (cl)

Generate an unstructuring hook for optional types.

Parameters
cl (typelT])

Return type
Callable[[T], Any]

gen_structure_typeddict (cl)
Generate a TypedDict structure function.

Also apply converter-scored modifications.

Parameters
cl (Any)

Return type
Callable[[dict, Any], dict]

gen_structure_attrs_fromdict (cl)

Parameters
cl (typelT])

Return type
Callable[[Mapping]str, Any], Any], T]

gen_unstructure_iterable (cl, unstructure_to=None)

Parameters
e cl (Any)
* unstructure_to (Any)

Return type
Callablel[Iterable[Any]], Any]

gen_unstructure_hetero_tuple (cl, unstructure_to=None)

Parameters
* cl (Any)
* unstructure_to (Any)

Return type
Callable[[Tuple[Any, ...]], Any]

gen_unstructure_mapping (c/, unstructure_to=None, key_handler=None)

Parameters
* cl (Any)
* unstructure_to (Any)
* key_handler (Callable[[Any, Any | None], Any] | None)

Return type
Callable[[Mapping| Any, Any]], Any]

74 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

gen_structure_counter (cl)

Parameters
cl (Any)

Return type
Callable[[Mapping[Any, Any], Any], T]

gen_structure_mapping (cl)

Parameters
cl (Any)

Return type
Callable[[Mapping[Any, Any], Any], T]

copy (dict_factory=None, unstruct_strat=None, omit_if _default=None, forbid_extra_keys=None,
type_overrides=None, unstruct_collection_overrides=None, prefer_attrib_converters=None,
detailed_validation=None)

Create a copy of the converter, keeping all existing custom hooks.

Parameters

detailed_validation (bool | None)-— Whether to use a slightly slower mode for
detailed validation errors.

dict_factory (Callable[[], Any] | None)

unstruct_strat (UnstructureStrategy | None)

omit_if default (bool | None)

forbid_extra_keys (bool | None)

type_overrides (Mapping [type, AttributeOverride] | None)
unstruct_collection_overrides (Mapping[type, Callable] | None)

prefer_attrib_converters (bool | None)

Return type
Converter

class cattrs.AttributeValidationNote (string, name, type)

Bases: str

Attached as a note to an exception when an attribute fails structuring.

Parameters

* string (str)

* name (str)

* type (Any)

Return type
Attribute ValidationNote

name: str

type: Any

13.1. cattrs package

75

cattrs Documentation, Release 24.1.2

exception cattrs.BaseValidationError (message, excs, cl)

Bases: ExceptionGroup

Parameters
cl (Type)

cl: Type
derive (excs)
exception cattrs.ClassValidationError (message, excs, cl)
Bases: BaseValidationError
Raised when validating a class if any attributes are invalid.

Parameters
cl (Type)

group_exceptions ()

Split the exceptions into two groups: with and without validation notes.

Return type
Tuple| List[Tuple[Exception, AttributeValidationNote]], List[Exception]]

exception cattrs.ForbiddenExtraKeysError (message, cl, extra_fields)

Bases: Exception
Raised when forbid_extra_keys is activated and such extra keys are detected during structuring.

The attribute extra_fields is a sequence of those extra keys, which were the cause of this error, and ¢/ is the class
which was structured with those extra keys.

Parameters
* message (str | None)
* cl(Type)
* extra_fields (Set[str])

Return type
None

cattrs.GenConverter

alias of Converter

exception cattrs.IterableValidationError (message, excs, cl)

Bases: BaseValidationError
Raised when structuring an iterable.

Parameters
cl (Type)
group_exceptions ()
Split the exceptions into two groups: with and without validation notes.

Return type
Tuple[List[Tuple[Exception, IterableValidationNote]], List[Exception]]

76 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

class cattrs.IterableValidationNote (siring, index, type)

Bases: str
Attached as a note to an exception when an iterable element fails structuring.
Parameters
* string (str)
e index (int | str)
* type (Any)

Return type
IterableValidationNote

type: Any
cattrs.override (omit_if_default=None, rename=None, omit=None, struct_hook=None, unstruct_hook=None)
Override how a particular field is handled.
Parameters

* omit (bool | None)-Whether to skip the field or not. None means apply default handling.
e omit_if_ default (bool | None)
e rename (str | None)
* struct_hook (Callable[[Any, Any], Any] | None)
* unstruct_hook (Callable|[[Any], Any] | None)

Return type
AttributeOverride

exception cattrs.StructureHandlerNotFoundError (message, type_)

Bases: Exception
Error raised when structuring cannot find a handler for converting inputs into t ype_.
Parameters
* message (str)
* type_ (Type)

Return type
None

cattrs.transform_error (exc, path="$', format_exception=<function format_exception>)

Transform an exception into a list of error messages.
To get detailed error messages, the exception should be produced by a converter with detailed_validation set.
By default, the error messages are in the form of {description} @ {path;.
While traversing the exception and subexceptions, the path is formed:
* by appending .{field_name} for fields in classes
* by appending [{int}] for indices in iterables, like lists

* by appending [{str}] for keys in mappings, like dictionaries

Parameters

13.1. cattrs package 77

cattrs Documentation, Release 24.1.2

* exc (ClassValidationError [IterableValidationError | BaseEx-—
ception) — The exception to transform into error messages.

* path (str) - The root path to use.

* format_exception (Callable[[BaseException, type | None], str])
— A callable to use to transform Exceptions into string descriptions of errors.

Return type
List[str]
Added in version 23.1.0.

class cattrs.UnstructureStrategy (value, names=<not given>, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum
attrs classes unstructuring strategies.

AS_DICT = 'asdict'

AS_TUPLE = 'astuple'

13.1.1 Subpackages

cattrs.gen package

cattrs.gen.make_dict_unstructure_£n (cl, converter, _cattrs_omit_if _default=False,
_cattrs_use_linecache=True, _cattrs_use_alias=False,
_cattrs_include_init_false=False, **kwargs)

Generate a specialized dict unstructuring function for an attrs class or a dataclass.
Any provided overrides are attached to the generated function under the overrides attribute.
Parameters

* _cattrs_omit_if_ default (bool) - if true, attributes equal to their default values
will be omitted in the result dictionary.

* _cattrs_use_alias (bool) - If true, the attribute alias will be used as the dictionary
key by default.

e cattrs_include_init_false (bool)—If true, _attrs_ fields marked as init=False
will be included.

* cl(typelT])

e converter (BaseConverter)

e cattrs_use_linecache (bool)
* kwargs (AttributeOverride)

Return type
Callable[[T], dict[str, Any]]

Added in version 23.2.0: _cattrs_use_alias

Added in version 23.2.0: _cattrs_include_init_false

78 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

cattrs.gen.make_dict_structure_£n (cl, converter, _cattrs_forbid_extra_keys='from_converter’,

_cattrs_use_linecache=True,
_cattrs_prefer_attrib_converters='from_converter’,
_cattrs_detailed_validation="from_converter’',
_cattrs_use_alias=False, _cattrs_include_init_false=False,
*Elwargs)

Generate a specialized dict structuring function for an attrs class or dataclass.

Any provided overrides are attached to the generated function under the overrides attribute.

Parameters

_cattrs_forbid_extra_keys (bool | Literal['from_converter']) —
Whether the structuring function should raise a ForbiddenExtraKeysError if unknown keys are
encountered.

_cattrs_use_linecache (bool) — Whether to store the source code in the Python
linecache.

_cattrs_prefer_attrib_converters (bool / Lit-
eral['from converter']) — If an _attrs_ converter is present on a field, use it
instead of processing the field normally.

_cattrs_detailed_validation (bool | Literal['from_converter'])
— Whether to use a slower mode that produces more detailed errors.

_cattrs_use_alias (bool) - If true, the attribute alias will be used as the dictionary
key by default.

_cattrs_include_init_false (bool) — If true, _attrs_ fields marked as init=False
will be included.

cl (typel[T])
converter (BaseConverter)

kwargs (AttributeOverride)

Return type
DictStructureFn[T]

Added in version 23.2.0: _cattrs_use_alias

Added in version 23.2.0: _cattrs_include_init_false

Changed in version 23.2.0: The _cattrs_forbid_extra_keys and _cattrs_detailed_validation parameters take their
values from the given converter by default.

Changed in version 24.1.0: The _cattrs_prefer_attrib_converters parameter takes its value from the given converter

by default.

cattrs.gen.make_iterable_unstructure_£fn (cl, converter, unstructure_to=None)

A hook factory for unstructuring iterables.

Parameters

unstructure_to (Any) — Force unstructuring to this type, if provided.
cl (Any)

converter (BaseConverter)

Return type
UnstructureHook

13.1. cattrs package

79

cattrs Documentation, Release 24.1.2

Changed in version 24.2.0: typing. NoDefault is now correctly handled as Any.

cattrs.gen.make_hetero_tuple_unstructure_£n (cl, converter, unstructure_to=None,
type_args=None)

Generate a specialized unstructure function for a heterogenous tuple.
Parameters
* type_args (tuple | None)-If provided, override the type arguments.
* cl (Any)
e converter (BaseConverter)
* unstructure_to (Any)

Return type
HeteroTupleUnstructureFn

cattrs.gen.make_mapping_unstructure_£n (cl, converter, unstructure_to=None, key_handler=None)

Generate a specialized unstructure function for a mapping.
Parameters
* cl(Any)
e converter (BaseConverter)
* unstructure_to (Any)
* key_handler (Callable[[Any, Any | None], Any] | None)

Return type
MappingUnstructureFn

cattrs.gen.make_mapping_structure_£n (cl, converter, structure_to=<class 'dict’>, key_type=NOTHING,
val_type=NOTHING, detailed_validation=True)

Generate a specialized structure function for a mapping.
Parameters
* cl(typelT])
* converter (BaseConverter)
* structure_to (type)
* detailed_validation (bool)

Return type
MappingStructureFn[T]

cattrs.gen.make_dict_unstructure_f£fn_from_attrs (atrs, cl, converter, typevar_map={},
_cattrs_omit_if _default=False,
_cattrs_use_linecache=True,
_cattrs_use_alias=False,
_cattrs_include_init_false=False, **kwargs)

Generate a specialized dict unstructuring function for a list of attributes.
Usually used as a building block by more specialized hook factories.
Any provided overrides are attached to the generated function under the overrides attribute.

Parameters

80 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

cl (type) — The class for which the function is generated; used mostly for its name, module
name and qualname.

_cattrs_omit_if_default (bool) — if true, attributes equal to their default values
will be omitted in the result dictionary.

_cattrs_use_alias (bool) - If true, the attribute alias will be used as the dictionary
key by default.

_cattrs_include_init_false (bool) —If true, _attrs_ fields marked as inir=False
will be included.

attrs (list [Attribute])
converter (BaseConverter)
typevar_map (dict [str, Any])
_cattrs_use_linecache (bool)

kwargs (AttributeOverride)

Return type
Callable[[T], dict[str, Any]]

Added in version 24.1.0.

cattrs.gen.make_dict_structure_£fn_from_attrs (attrs, cl, converter, typevar_map={},

_cattrs_forbid_extra_keys="'from_converter’,
_cattrs_use_linecache=True,

_cattrs_prefer_attrib_converters='from_converter’,

_cattrs_detailed_validation="from_converter’',
_cattrs_use_alias=False,
_cattrs_include_init_false=False, **kwargs)

Generate a specialized dict structuring function for a list of attributes.

Usually used as a building block by more specialized hook factories.

Any provided overrides are attached to the generated function under the overrides attribute.

Parameters

_cattrs_forbid_extra_keys (bool | Literal['from converter']) -
Whether the structuring function should raise a ForbiddenExtraKeysError if unknown keys are
encountered.

_cattrs_use_linecache (bool) — Whether to store the source code in the Python
linecache.

_cattrs_prefer_attrib_converters (bool / Lit-
eral['from_converter']) — If an _attrs_ converter is present on a field, use it
instead of processing the field normally.

_cattrs_detailed_validation (bool | Literal['from_converter'])
— Whether to use a slower mode that produces more detailed errors.

_cattrs_use_alias (bool) - If true, the attribute alias will be used as the dictionary
key by default.

_cattrs_include_init_false (bool) —If true, _attrs_ fields marked as init=False
will be included.

attrs (list [Attribute])

cl (type)

13.1. cattrs package

81

cattrs Documentation, Release 24.1.2

* converter (BaseConverter)
* typevar_map (dict[str, Any])
* kwargs (AttributeOverride)

Return type
DictStructureFn[T]

Added in version 24.1.0.

Submodules
cattrs.gen.typeddicts module

cattrs.gen.typeddicts.make_dict_unstructure_£n (cl, converter, _cattrs_use_linecache=True,
**kwargs)

Generate a specialized dict unstructuring function for a TypedDict.
Parameters
e cl (type[T])— A TypedDict class.

* converter (BaseConverter) — A Converter instance to use for unstructuring nested
fields.

* kwargs (AttributeOverride)— A mapping of field names to an AttributeOverride, for
customization.

* _cattrs_detailed_validation — Whether to store the generated code in the
linecache, for easier debugging and better stack traces.

e cattrs_use_linecache (bool)

Return type
Callable[[T], dict[str, Any]]

cattrs.gen.typeddicts.make_dict_structure_£n (cl, converter,
_cattrs_forbid_extra_keys="'from_converter’,
_cattrs_use_linecache=True,
_cattrs_detailed_validation="from_converter’',
*Ekwargs)

Generate a specialized dict structuring function for typed dicts.
Parameters
e cl (Any) — A TypedDict class.
* converter (BaseConverter)— A Converter instance to use for structuring nested fields.

* kwargs (AttributeOverride)— A mapping of field names to an AstributeOverride, for
customization.

* cattrs_detailed_validation (bool | Literal['from_converter'])
— Whether to use a slower mode that produces more detailed errors.

e cattrs_forbid_extra_keys (bool | Literal['from converter'])—
Whether the structuring function should raise a ForbiddenExtraKeysError if unknown keys are
encountered.

82 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

* _cattrs_detailed_validation — Whether to store the generated code in the
linecache, for easier debugging and better stack traces.

e cattrs_use_linecache (bool)

Return type
Callable[[dict, Any], Any]

Changed in version 23.2.0: The _cattrs_forbid_extra_keys and _cattrs_detailed_validation parameters take their
values from the given converter by default.

cattrs.preconf package

cattrs.preconf.validate_datetime (v,_)

cattrs.preconf.wrap(_)
Wrap a Converter __init__ in a type-safe way.

Parameters
_(callable[[~P], Any])

Return type
Callable[[Callable[[...], T1], Callable[[~P], T1]

Submodules
cattrs.preconf.bson module
cattrs.preconf.cbor2 module

Preconfigured converters for cbor2.

class cattrs.preconf.cbor2.Cbor2Converter (dict_factory=<class 'dict">,
unstruct_strat=UnstructureStrategy. AS_DICT,
omit_if _default=False, forbid_extra_keys=False,
type_overrides={}, unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,
structure_fallback_factory=<function
Converter.<lambda>>)

Bases: Converter
Parameters

* detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

* unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

* structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

* dict_factory (Callable[[], Any])

13.1. cattrs package 83

cattrs Documentation, Release 24.1.2

* unstruct_strat (UnstructureStrateqgy)
e omit_if_default (bool)
* forbid_extra_keys (bool)
* type_overrides (Mapping [type, AttributeOverride])
* unstruct_collection_overrides (Mapping[type, Callable])
* prefer_attrib_converters (bool)
Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters
* obj (Any)
* unstructure_as (Any)
e kwargs (Any)

Return type
bytes

loads (data, cl, **kwargs)
Parameters
* data (bytes)
* cl(Typel[T])
* kwargs (Any)

Return type
T

omit_if default
forbid_extra_keys
type_overrides

cattrs.preconf.cbor2.configure_converter (converter)
Configure the converter for use with the cbor2 library.
* datetimes are serialized as timestamp floats
* sets are serialized as lists

Parameters
converter (BaseConverter)

cattrs.preconf.cbor?2.make_converter (*args, **kwargs)

Parameters

* args (Any)

84 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

kwargs (Any)

Return type
Cbor2Converter

cattrs.preconf.json module

Preconfigured converters for the stdlib json.

class cattrs.preconf.json.JsonConverter (dict_factory=<class 'dict’>,

unstruct_strat=UnstructureStrategy.AS_DICT,

omit_if _default=False, forbid_extra_keys=False,
type_overrides={}, unstruct_collection_overrides={},
prefer_attrib_converters=False, detailed_validation="True,
unstructure_fallback_factory=<function
Converter.<lambda>>,
structure_fallback_factory=<function
Converter.<lambda>>)

Bases: Converter

Parameters

detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

dict_factory (Callable[[], Any])

unstruct_strat (UnstructureStrateqgy)

omit_if default (bool)

forbid_extra_keys (bool)

type_overrides (Mapping [type, AttributeOverride])
unstruct_collection_overrides (Mapping [type, Callable])

prefer_attrib_converters (bool)

Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters

* obj (Any)
* unstructure_as (Any)

* kwargs (Any)

13.1. cattrs package 85

cattrs Documentation, Release 24.1.2

Return type
Str

loads (data, cl, **kwargs)

Parameters
e data (bytes | str)
* cl(Typel[T])
e kwargs (Any)

Return type
T

omit_if default
forbid_extra_keys
type_overrides
cattrs.preconf.json.configure_converter (converter)
Configure the converter for use with the stdlib json module.
* bytes are serialized as base85 strings
e datetimes are serialized as ISO 8601
* counters are serialized as dicts
* sets are serialized as lists
 union passthrough is configured for unions of strings, bools, ints, floats and None

Parameters
converter (BaseConverter)

cattrs.preconf.json.make_converter (*args, **kwargs)
Parameters
* args (Any)
* kwargs (Any)

Return type
JsonConverter

cattrs.preconf.msgpack module

Preconfigured converters for msgpack.

86 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

class cattrs.preconf.msgpack.MsgpackConverter (dict_factory=<class 'dict™>,

unstruct_strat=UnstructureStrategy.AS_DICT,
omit_if _default=False, forbid_extra_keys=False,
type_overrides={},
unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,

structure_fallback_ factory=<function
Converter.<lambda>>)

Bases: Converter

Parameters

detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

dict_factory (Callable[[], Any])

unstruct_strat (UnstructureStrateqgy)

omit_if default (bool)

forbid_extra_keys (bool)

type_overrides (Mapping [type, AttributeOverride])
unstruct_collection_overrides (Mapping [type, Callable])

prefer_attrib_converters (bool)

Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_ factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters

e obj (Any)
* unstructure_as (Any)

* kwargs (Any)

Return type

bytes

loads (data, cl, **kwargs)

Parameters

* data (bytes)

* cl(Typel[T])

13.1. cattrs package 87

cattrs Documentation, Release 24.1.2

* kwargs (Any)

Return type
T

omit_if default
forbid_extra_keys
type_overrides
cattrs.preconf.msgpack.configure_converter (converter)
Configure the converter for use with the msgpack library.
* datetimes are serialized as timestamp floats
* sets are serialized as lists

Parameters
converter (BaseConverter)

cattrs.preconf.msgpack.make_converter (*args, **kwargs)

Parameters
* args (Any)
* kwargs (Any)

Return type
MsgpackConverter

cattrs.preconf.msgspec module

Preconfigured converters for msgspec.

class cattrs.preconf.msgspec.MsgspecdsonConverter (dict_factory=<class ‘dict'>, un-
struct_strat=UnstructureStrategy.AS_DICT,
omit_if_default=False,
forbid_extra_keys=False,
type_overrides={},
unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,
structure_fallback_ factory=<function
Converter.<lambda>>)

Bases: Converter
A converter specialized for the _msgspec_ library.
Parameters

* detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

* unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

88 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

e structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

e dict_factory (Callable[[], Any])
* unstruct_strat (UnstructureStrateqgy)
e omit_if_ default (bool)
* forbid_extra_keys (bool)
* type_overrides (Mapping [type, AttributeOverride])
* unstruct_collection_overrides (Mapping[type, Callable])
* prefer_attrib_converters (bool)
Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

encoder: Encoder = <msgspec.json.Encoder object>

The msgspec encoder for dumping.

dumps (obj, unstructure_as=None, **kwargs)

Unstructure and encode obj into JSON bytes.
Parameters
* obj (Any)
* unstructure_as (Any)
* kwargs (Any)

Return type
bytes

get_dumps_hook (unstructure_as, **kwargs)

Produce a dumps hook for the given type.
Parameters
* unstructure_as (Any)
e kwargs (Any)

Return type
Callable[[Any), bytes]

loads (data, cl, **kwargs)
Decode and structure ¢/ from the provided JSON bytes.

Parameters
e data (bytes)
* cl(typelT])
* kwargs (Any)

Return type
T

13.1. cattrs package 89

cattrs Documentation, Release 24.1.2

get_loads_hook (cl)
Produce a loads hook for the given type.

Parameters
cl (type[T])

Return type
Callable[[bytes], T1]

omit_if default
forbid_extra_keys
type_overrides
cattrs.preconf.msgspec.configure_converter (converter)
Configure the converter for the msgspec library.
* bytes are serialized as base64 strings, directly by msgspec
* datetimes and dates are passed through to be serialized as RFC 3339 directly
e enums are passed through to msgspec directly
* union passthrough configured for str, bool, int, float and None
Parameters
converter (Converter)
Return type

None

cattrs.preconf.msgspec.make_converter (*args, **kwargs)

Parameters
* args (Any)
* kwargs (Any)

Return type
MsgspecJsonConverter

cattrs.preconf.orjson module

Preconfigured converters for orjson.

class cattrs.preconf.orjson.OrjsonConverter (dict_factory=<class 'dict’>,
unstruct_strat=UnstructureStrategy.AS_DICT,
omit_if _default=False, forbid_extra_keys=False,
type_overrides={}, unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,
structure_fallback_factory=<function
Converter.<lambda>>)

Bases: Converter

Parameters

90 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

* detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

* unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

e structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

e dict_factory (Callable[[], Any])
* unstruct_strat (UnstructureStrateqgy)
* omit_if_ default (bool)
* forbid_extra_keys (bool)
* type_overrides (Mapping [type, AttributeOverride])
* unstruct_collection_overrides (Mapping[type, Callable])
* prefer_attrib_converters (bool)
Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_ factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters
* obj (Any)
* unstructure_as (Any)
e kwargs (Any)

Return type
bytes

loads (data, cl)
Parameters
e data (bytes | bytearray | memoryview | Str)
* cl(Typel[T])

Return type
T

omit_if_ default
forbid_extra_keys
type_overrides

cattrs.preconf.orjson.configure_converter (converter)
Configure the converter for use with the orjson library.
* bytes are serialized as base85 strings
* datetimes and dates are passed through to be serialized as RFC 3339 by orjson

 typed namedtuples are serialized as lists

13.1. cattrs package 91

cattrs Documentation, Release 24.1.2

¢ sets are serialized as lists

e string enum mapping keys have special handling

¢ mapping Keys are coerced into strings when unstructurin,
pping Key: g g

Parameters
converter (BaseConverter)

cattrs.preconf.orjson.make_converter (*args, **kwargs)

Parameters

args (Any)

kwargs (Any)

Return type
OrjsonConverter

cattrs.preconf.pyyaml module

Preconfigured converters for pyyaml.

cattrs.preconf.pyyaml.validate_date (v, _)

class cattrs.preconf.pyyaml.PyyamlConverter (dict_factory=<class 'dict">,

unstruct_strat=UnstructureStrategy.AS_DICT,
omit_if_default=False, forbid_extra_keys=False,
type_overrides={}, unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,

structure_fallback_ factory=<function
Converter.<lambda>>)

Bases: Converter

Parameters

detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

unstructure_fallback_factory (HookFactory [UnstructureHook])— A
hook factory to be called when no registered unstructuring hooks match.

structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

dict_factory (Callable[[], Any])

unstruct_strat (UnstructureStrateqgy)

omit_if default (bool)

forbid_extra_keys (bool)

type_overrides (Mapping [type, AttributeOverride])
unstruct_collection_overrides (Mapping [type, Callable])

prefer_attrib_converters (bool)

92

Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters
* obj (Any)
* unstructure_as (Any)
* kwargs (Any)

Return type
Str

loads (data, cl)

Parameters
e data (str)
* cl(TypelT])

Return type
T

omit_if_ default
forbid_extra_keys
type_overrides
cattrs.preconf.pyyaml.configure_converter (converter)
Configure the converter for use with the pyyaml library.
* frozensets are serialized as lists
* string enums are converted into strings explicitly
¢ datetimes and dates are validated
* typed namedtuples are serialized as lists

Parameters
converter (BaseConverter)

cattrs.preconf.pyyaml.make_converter (*args, **kwargs)

Parameters
* args (Any)
* kwargs (Any)

Return type
PyyamlConverter

13.1. cattrs package 93

cattrs Documentation, Release 24.1.2

cattrs.preconf.tomlkit module

Preconfigured converters for tomlkit.

class cattrs.preconf.tomlkit.TomlkitConverter (dict_factory=<class 'dict™>,

unstruct_strat=UnstructureStrategy.AS_DICT,
omit_if _default=False, forbid_extra_keys=False,
type_overrides={},
unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,

structure_fallback_ factory=<function
Converter.<lambda>>)

Bases: Converter

Parameters

detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

dict_factory (Callable[[], Any])

unstruct_strat (UnstructureStrateqgy)

omit_if default (bool)

forbid_extra_keys (bool)

type_overrides (Mapping [type, AttributeOverride])
unstruct_collection_overrides (Mapping [type, Callable])

prefer_attrib_converters (bool)

Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_ factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters

e obj (Any)
* unstructure_as (Any)

* kwargs (Any)

Return type

str

94

Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

loads (data, cl)

Parameters
* data (str)
* cl(TypelT])

Return type
T

omit_if_ default
forbid_extra_keys
type_overrides
cattrs.preconf.tomlkit.configure_converter (converter)
Configure the converter for use with the tomlkit library.
* bytes are serialized as base85 strings
* sets are serialized as lists
e tuples are serializas as lists
* mapping keys are coerced into strings when unstructuring

Parameters
converter (BaseConverter)

cattrs.preconf.tomlkit .make_converter (*args, **kwargs)

Parameters
* args (Any)
* kwargs (Any)

Return type
TomlkitConverter

cattrs.preconf.ujson module

Preconfigured converters for ujson.

class cattrs.preconf.ujson.UjsonConverter (dict_factory=<class 'dict">,
unstruct_strat=UnstructureStrategy. AS_DICT,
omit_if _default=False, forbid_extra_keys=False,
type_overrides={}, unstruct_collection_overrides={},
prefer_attrib_converters=False,
detailed_validation=True,
unstructure_fallback_factory=<function
Converter.<lambda>>,
structure_fallback_ factory=<function
Converter.<lambda>>)

Bases: Converter

Parameters

13.1. cattrs package 95

cattrs Documentation, Release 24.1.2

detailed_validation (bool) — Whether to use a slightly slower mode for detailed
validation errors.

unstructure_fallback_factory (HookFactory [UnstructureHook]) — A
hook factory to be called when no registered unstructuring hooks match.

structure_fallback_factory (HookFactory [StructureHook]) — A hook
factory to be called when no registered structuring hooks match.

dict_factory (Callable[[], Any])

unstruct_strat (UnstructureStrateqgy)

omit_if default (bool)

forbid_extra_keys (bool)

type_overrides (Mapping [type, AttributeOverride])
unstruct_collection_overrides (Mapping [type, Callable])

prefer_attrib_converters (bool)

Added in version 23.2.0: unstructure_fallback_factory
Added in version 23.2.0: structure_fallback_ factory

Changed in version 24.2.0: The default structure_fallback_factory now raises errors for missing handlers more
eagerly, surfacing problems earlier.

dumps (obj, unstructure_as=None, **kwargs)

Parameters

e obj (Any)
* unstructure_as (Any)

e kwargs (Any)

Return type

str

loads (data, cl, **kwargs)

Parameters

* data (AnyStr)
* cl(TypelT])

* kwargs (Any)

Return type

T

omit_if_ default

forbid_extra_keys

type_overrides

cattrs.preconf.ujson.configure_converter (converter)

Configure the converter for use with the ujson library.

* bytes are serialized as base64 strings

¢ datetimes are serialized as ISO 8601

96

Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

¢ sets are serialized as lists

Parameters
converter (BaseConverter)

cattrs.preconf.ujson.make_converter (*args, **kwargs)

Parameters
* args (Any)
* kwargs (Any)

Return type
UjsonConverter

cattrs.strategies package

High level strategies for converters.

cattrs.strategies.configure_tagged_union (union, converter, tag_generator=<function
default_tag_generator>, tag_name="_type',
default=NOTHING)

Configure the converter so that union (which should be a union) is un/structured with the help of an additional piece
of data in the unstructured payload, the tag.

Parameters
* converter (BaseConverter)— The converter to apply the strategy to.

* tag_generator (Callable[[Type], str])— A tag_generator function is used to
map each member of the union to a tag, which is then included in the unstructured payload.
The default tag generator returns the name of the class.

* tag_name (str) - The key under which the tag will be set in the unstructured payload. By
default, ‘ rype’.

* default (Type | Literal[_Nothing.NOTHING])— An optional class to be used
if the tag information is not present when structuring.

* union (Any)

Return type
None

The tagged union strategy currently only works with the dict un/structuring base strategy.
Added in version 23.1.0.

cattrs.strategies.configure_union_passthrough (union, converter)

Configure the converter to support validating and passing through unions of the provided types and their subsets.

For example, all mature JSON libraries natively support producing unions of ints, floats, Nones, and strings. Using
this strategy, a converter can be configured to efficiently validate and pass through unions containing these types.

The most important point is that another library (in this example the JSON library) handles producing the union,
and the converter is configured to just validate it.

Literals of provided types are also supported, and are checked by value.

NewTypes of provided types are also supported.

13.1. cattrs package 97

cattrs Documentation, Release 24.1.2

The strategy is designed to be O(1) in execution time, and independent of the ordering of types in the union.

If the union contains a class and one or more of its subclasses, the subclasses will also be included when validating
the superclass.

Added in version 23.2.0.
Parameters
* union (Any)
* converter (BaseConverter)

Return type
None

cattrs.strategies.include_subclasses (cl, converter, subclasses=None, union_strategy=None,
overrides=None)

Configure the converter so that the attrs/dataclass ¢l is un/structured as if it was a union of itself and all its subclasses
that are defined at the time when this strategy is applied.

Parameters
e cl (type) — A base attrs or dataclass class.

* converter (C) — The Converter on which this strategy is applied. Do note that the strategy
does not work for a cattrs.BaseConverter.

* subclasses (tuple[type, ...] | None)— A tuple of sublcasses whose ancestor
is cl. If left as None, subclasses are detected using recursively the __subclasses__ method of ¢/
and its descendents.

* union_strategy (Callable[[Any, CJ], Any] | None)— A callable of two
arguments passed by position (subclass_union, converter) that defines the union strategy to
use to disambiguate the subclasses union. If None (the default), the automatic unique field
disambiguation is used which means that every single subclass participating in the union must
have an attribute name that does not exist in any other sibling class.

* overrides (dict[str, AttributeOverride] | None)— a mapping of cl at-
tribute names to overrides (instantiated with cattrs.gen.override ()) to customize
un/structuring.

Return type
None

Added in version 23.1.0.

Changed in version 24.1.0: When overrides are not provided, hooks for individual classes are retrieved from the
converter instead of generated with no overrides, using converter defaults.

cattrs.strategies.use_class_methods (converter, structure_method_name=None,
unstructure_method_name=None)

Configure the converter such that dedicated methods are used for (un)structuring the instance of a class if such
methods are available. The default (un)structuring will be applied if such an (un)structuring methods cannot be
found.

Parameters

* converter (BaseConverter) — The Converter on which this strategy is applied. You
canuse cattrs.BaseConverter or any other derived class.

98 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

* structure_method_name (str | None)- Optional string with the name of the class
method which should be used for structuring. If not provided, no class method will be used

for structuring.

* unstructure_method_name (str

| None) — Optional string with the name of the

class method which should be used for unstructuring. If not provided, no class method will be

used for unstructuring.

Return type
None

If you want to (un)structured nested objects, just append a converter parameter to your (un)structuring methods

and you will receive the converter there.

Added in version 23.2.0.

13.1.2 Submodules

13.1.3 cattrs.cols module

Utility functions for collections.

cattrs.cols.is_any_set (fype)

A predicate function for both mutable and frozensets.

Return type
bool

cattrs.cols.is_frozenset (fype)

A predicate function for frozensets.

Matches built-in frozensets and frozensets from the typing module.

Parameters
type (Any)

Return type
bool

cattrs.cols.is_namedtuple (fype)
A predicate function for named tuples.

Parameters
type (Any)
Return type
bool
cattrs.cols.is_mapping (fype)
A predicate function for mappings.
Parameters
type (Any)
Return type
bool
cattrs.cols.is_set (fype)

A predicate function for (mutable) sets.

Matches built-in sets and sets from the typing module.

13.1. cattrs package

99

cattrs Documentation, Release 24.1.2

Parameters
type (Any)

Return type
bool

cattrs.cols.is_sequence (fype)

A predicate function for sequences.
Matches lists, sequences, mutable sequences, deques and homogenous tuples.

Parameters
type (Any)

Return type
bool

cattrs.cols.iterable_unstructure_factory (cl, converter, unstructure_to=None)

A hook factory for unstructuring iterables.
Parameters
* unstructure_to (Any) — Force unstructuring to this type, if provided.
* cl(Any)
* converter (BaseConverter)

Return type
UnstructureHook

Changed in version 24.2.0: typing. NoDefault is now correctly handled as Any.

cattrs.cols.list_structure_factory (fype, converter)

A hook factory for structuring lists.
Converts any given iterable into a list.
Parameters
* type (type)
* converter (BaseConverter)

Return type
StructureHook

cattrs.cols.namedtuple_structure_f£factory (cl, converter)

A hook factory for structuring namedtuples from iterables.
Parameters
e cl (type[tuple])
e converter (BaseConverter)

Return type
StructureHook

cattrs.cols.namedtuple_unstructure_factory (cl, converter, unstructure_to=None)

A hook factory for unstructuring namedtuples.
Parameters

* unstructure_to (Any) — Force unstructuring to this type, if provided.

100 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

e cl (type[tuple])
e converter (BaseConverter)

Return type
UnstructureHook

cattrs.cols.namedtuple_dict_structure_factory (cl, converter,
detailed_validation="from_converter’,
forbid_extra_keys=False, use_linecache=True, /,
**kwargs)

A hook factory for hooks structuring namedtuples from dictionaries.
Parameters

e forbid_extra_keys (bool)— Whether the hook should raise a ForbiddenExtraKeysEr-
ror if unknown keys are encountered.

* use_linecache (bool)— Whether to store the source code in the Python linecache.
e cl(type[tuple])

e converter (BaseConverter)

* detailed_validation (bool | Literal['from_converter'])

* kwargs (AttributeOverride)

Return type
StructureHook

Added in version 24.1.0.

cattrs.cols.namedtuple_dict_unstructure_factory (cl, converter, omit_if _default=False,
use_linecache=True, /, **kwargs)

A hook factory for hooks unstructuring namedtuples to dictionaries.
Parameters

* omit_if default (bool) — When true, attributes equal to their default values will be
omitted in the result dictionary.

* use_linecache (bool)— Whether to store the source code in the Python linecache.
e cl(type[tuple])

* converter (BaseConverter)

* kwargs (AttributeOverride)

Return type
UnstructureHook

Added in version 24.1.0.

cattrs.cols.mapping_structure_factory (cl, converter, structure_to=<class 'dict™>,
key_type=NOTHING, val_type=NOTHING,
detailed_validation="True)

Generate a specialized structure function for a mapping.
Parameters
* cl(typelT])

e converter (BaseConverter)

13.1. cattrs package 101

cattrs Documentation, Release 24.1.2

* structure_to (type)
* detailed_validation (bool)

Return type
MappingStructureFn[T]

13.1.4 cattrs.disambiguators module

Utilities for union (sum type) disambiguation.

cattrs.disambiguators.is_supported_union (fyp)

Whether the type is a union of attrs classes.

Parameters
typ (Any)

Return type
bool

cattrs.disambiguators.create_default_dis_func (converter, *classes, use_literals=True,
overrides="from_converter')

Given attrs classes or dataclasses, generate a disambiguation function.
The function is based on unique fields without defaults or unique values.
Parameters

* use_literals (bool)— Whether to try using fields annotated as literals for disambigua-
tion.

e overrides (dict/[str, AttributeOverride] / Lit-
eral ['from _converter']) - Attribute overrides to apply.

* converter (BaseConverter)
* classes (type[AttrsInstance])

Return type
Callable[[Mapping[Any, Any]], type[Any] | None]

Changed in version 24.1.0: Dataclasses are now supported.

13.1.5 cattrs.dispatch module

class cattrs.dispatch.FunctionDispatch (converter, handler_pairs=NOTHING)

Bases: object

FunctionDispatch is similar to functools.singledispatch, but instead dispatches based on functions that take the type
of the first argument in the method, and return True or False.

objects that help determine dispatch should be instantiated objects.
Parameters

* converter (BaseConverter) — A converter to be used for factories that require con-
verters.

* handler_pairs (list[tuple[Predicate, Callable[[Any, Any],
Any], bool, bool]])

102 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

Changed in version 24.1.0: Support for factories that require converters, hence this requires a converter when
creating.

Method generated by attrs for class FunctionDispatch.

register (predicate, func, is_generator=Fualse, takes_converter=False)

Parameters
* predicate (Callable[[Any], bool])
e func (Callable([...], Any])

Return type
None

dispatch (1yp)
Return the appropriate handler for the object passed.

Parameters
typ (Any)

Return type
Callablel[...], Any] | None

get_num_fns ()

Return type
int

copy_to (other, skip=0)

Parameters
e other (FunctionDispatch)
e skip (int)

Return type
None

class cattrs.dispatch.MultiStrategyDispatch (fallback_factory, converter)

Bases: Generic[Hook]
MultiStrategyDispatch uses a combination of exact-match dispatch, singledispatch, and FunctionDispatch.
Parameters

* fallback_factory (HookFactory [Hook]) — A hook factory to be called when a
hook cannot be produced.

* converter (BaseConverter) — A converter to be used for factories that require con-
verters.

Changed in version 23.2.0: Fallbacks are now factories.

Changed in version 24.1.0: Support for factories that require converters, hence this requires a converter when
creating.

dispatch: Callable|[[TargetType, BaseConverter], Hook]

dispatch_without_caching (#yp)
Dispatch on the type but without caching the result.

13.1. cattrs package 103

cattrs Documentation, Release 24.1.2

Parameters
typ (Any)

Return type
Hook

register_cls_list (cls_and_handler, direct=False)

Register a class to direct or singledispatch.

Parameters
direct (bool)

Return type
None

register_func_list (pred_and_handler)

Register a predicate function to determine if the handler should be used for the type.

Parameters
pred_and_handler (list [tuple[Predicate, Any] | tuple[Predicate,
Any, bool] | tuple[Predicate, Callable[[Any, BaseConverter],
Any], Literal['extended']]])-Thelistof predicates and their associated handlers.
If a handler is registered in extended mode, it’s a factory that requires a converter.

clear_direct ()
Clear the direct dispatch.

Return type
None

clear_cache()
Clear all caches.

Return type
None

get_num_fns ()

Return type
int

copy_to (other, skip=0)

Parameters
e other (MultiStrategyDispatch)
e skip (int)

Return type
None

104 Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

13.1.6 cattrs.errors module

exception cattrs.errors.StructureHandlerNotFoundError (message, type_)

Bases: Exception
Error raised when structuring cannot find a handler for converting inputs into type_.
Parameters
* message (str)
* type_ (Type)

Return type
None

exception cattrs.errors.BaseValidationError (message, excs, cl)

Bases: ExceptionGroup

Parameters
cl (Type)

cl: Type
derive (excs)
class cattrs.errors.IterableValidationNote (string, index, type)
Bases: str
Attached as a note to an exception when an iterable element fails structuring.
Parameters
* string (str)
* index (int | str)
* type (4ny)

Return type
Iterable ValidationNote

type: Any

exception cattrs.errors.IterableValidationError (message, excs, cl)
Bases: BaseValidationError
Raised when structuring an iterable.

Parameters
cl (Type)

group_exceptions ()

Split the exceptions into two groups: with and without validation notes.

Return type
Tuple[List[Tuple[Exception, IterableValidationNote]], List[Exception]]

class cattrs.errors.AttributevValidationNote (string, name, type)
Bases: str

Attached as a note to an exception when an attribute fails structuring.

Parameters

13.1. cattrs package

105

cattrs Documentation, Release 24.1.2

* string (str)
e name (str)
* type (4ny)

Return type
Attribute ValidationNote

name: str

type: Any

exception cattrs.errors.ClassValidationError (message, excs, cl)

Bases: BaseValidationError

Raised when validating a class if any attributes are invalid.

Parameters
cl (Type)

group_exceptions ()

Split the exceptions into two groups: with and without validation notes.

Return type

Tuple| List[Tuple[Exception, AttributeValidationNote]], List[Exception]]

exception cattrs.errors.ForbiddenExtraKeysError (message, cl, extra_fields)

Bases: Exception

Raised when forbid_extra_keys is activated and such extra keys are detected during structuring.

The attribute extra_fields is a sequence of those extra keys, which were the cause of this error, and ¢/ is the class

which was structured with those extra keys.
Parameters
* message (str | None)
* cl(Type)
* extra_fields (Set[str])

Return type
None

13.1.7 cattrs.fns module

Useful internal functions.

cattrs.fns.Predicate

A predicate function determines if a type can be handled.

alias of Callable[[Any], bool]

cattrs.fns.identity (obj)
The identity function.

Parameters
obj (T)

Return type
T

106

Chapter 13. cattrs

cattrs Documentation, Release 24.1.2

cattrs.fns.raise_error (_,cl)

At the bottom of the condition stack, we explode if we can’t handle it.

Parameters
cl (Type)

Return type
NoReturn

13.1.8 cattrs.v module

Cattrs validation.

cattrs.v.format_exception (exc, ftype)

The default exception formatter, handling the most common exceptions.
The following exceptions are handled specially:
e KeyErrors (required field missing)
» ValueErrors (invalid value for type, expected <type> or just invalid value)
* TypeErrors (invalid value for type, expected <type> and a couple special cases for iterables)
e cattrs.ForbiddenExtraKeysError

» some AttributeErrors (special cased for structing mappings)

Parameters
* exc (BaseException)
* type (type | None)
Return type

str

cattrs.v.transform_error (exc, path='8', format_exception=<function format_exception>)

Transform an exception into a list of error messages.
To get detailed error messages, the exception should be produced by a converter with detailed_validation set.
By default, the error messages are in the form of {description} @ {path).
While traversing the exception and subexceptions, the path is formed:
* by appending .{field_name} for fields in classes
* by appending [{int}] for indices in iterables, like lists
* by appending [{str}] for keys in mappings, like dictionaries

Parameters

e exc (ClassValidationError [IterableValidationError | BaseEx-—
cept ion) — The exception to transform into error messages.

* path (str) - The root path to use.

 format_exception (Callable[[BaseException, type | None], str])
— A callable to use to transform Exceptions into string descriptions of errors.

13.1. cattrs package 107

cattrs Documentation, Release 24.1.2

Return type
List[str]

Added in version 23.1.0.

108 Chapter 13. cattrs

CHAPTER
FOURTEEN

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

14.1 Types of Contributions

14.1.1 Report Bugs

Report bugs at https://github.com/python-attrs/cattrs/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

14.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

14.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to whoever
wants to implement it.

14.1.4 Write Documentation

cattrs could always use more documentation, whether as part of the official cattrs docs, in docstrings, or even on the web
in blog posts, articles, and such.

109

https://github.com/python-attrs/cattrs/issues

cattrs Documentation, Release 24.1.2

14.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/python-attrs/cattrs/issues.
If you are proposing a feature:

¢ Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

14.2 Get Started!

Ready to contribute? Here’s how to set up cattrs for local development.
1. Fork the cattrs repo on GitHub.

2. Clone your fork locally::

$ git clone git@github.com:your_name_here/cattrs.git

3. Install your local copy into a virtualenv. Assuming you have PDM installed, this is how you set up your fork for
local development::

$ cd cattrs/
$ pdm install -d -G :all

4. Create a branch for local development::

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python
versions with tox::

$ make lint
make test
$ tox

U

6. Commit your changes and push your branch to GitHub::

$ git add .
git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

U

7. Submit a pull request through the GitHub website.

110 Chapter 14. Contributing

https://github.com/python-attrs/cattrs/issues
https://pdm.fming.dev/latest/

cattrs Documentation, Release 24.1.2

14.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for all supported Python versions. Check https://github.com/python-attrs/cattrs/
actions and make sure that the tests pass for all supported Python versions.

4. Don’t forget to add a line to HISTORY.md.

14.4 Tips

To run a subset of tests:

$ pdm run pytest tests.test_unstructure

14.3. Pull Request Guidelines 111

https://github.com/python-attrs/cattrs/actions
https://github.com/python-attrs/cattrs/actions

cattrs Documentation, Release 24.1.2

112 Chapter 14. Contributing

CHAPTER
FIFTEEN

BENCHMARKING

cattrs includes a benchmarking suite to help detect performance regressions and guide performance optimizations.

The suite is based on pytest and pytest-benchmark. Benchmarks are similar to tests, with the exception of being stored
in the bench/ directory and being used to verify performance instead of correctness.

15.1 A Sample Workflow

First, ensure the system you're benchmarking on is as stable as possible. For example, the pyperf library has a system
tune command that can tweak CPU frequency governors. You also might want to quit as many applications as possible
and run the benchmark suite on isolated CPU cores (taskset can be used for this purpose on Linux).

Then, generate a baseline using make bench. This will run the benchmark suite and save it into a file.

Following that, implement the changes you have in mind. Run the test suite to ensure correctness. Then, compare the
performance of the new code to the saved baseline using make bench-cmp. If the code is still correct but faster,
congratulations!

113

cattrs Documentation, Release 24.1.2

114 Chapter 15. Benchmarking

CHAPTER
SIXTEEN

HISTORY

This project adheres to Calendar Versioning. The first number of the version is the year. The second number is incre-
mented with each release, starting at 1 for each year. The third number is for emergencies when we need to start branches
for older releases.

Our backwards-compatibility policy can be found here.

16.1 24.2.0 (UNRELEASED)

* Potentially breaking: The converters raise St ructureHandlerNotFoundError more eagerly (on hook
creation, instead of on hook use). This helps surfacing problems with missing hooks sooner. See Migrations for
steps to restore legacy behavior. (#577)

¢ Add a Migrations page, with instructions on migrating changed behavior for each version. (#577)

* Python 3.13 is now supported. (#543 #547)

16.2 24.1.2 (2024-09-22)

* Fix BaseConverter.register_structure_hook () and BaseConverter.
register_unstructure_hook () type hints. (#581 #582)

16.3 24.1.1 (2024-09-11)

¢ Fix BaseConverter.register_ structure_hook_factory () and BaseConverter.
register_unstructure_hook_factory () type hints. (#578 #579)

16.4 24.1.0 (2024-08-28)

 Potentially breaking: Unstructuring hooks for t yping.Any are consistent now: values are unstructured using
their runtime type. Previously this behavior was underspecified and inconsistent, but followed this rule in the
majority of cases. Reverting old behavior is very dependent on the actual case; ask on the issue tracker if in doubt.
(#473)

* Minor change: Heterogeneous tuples are now unstructured into tuples instead of lists by default; this is significantly
faster and widely supported by serialization libraries. (#486)

115

https://calver.org/
https://github.com/python-attrs/cattrs/blob/main/.github/SECURITY.md
https://catt.rs/latest/migrations.html#the-default-structure-hook-fallback-factory
https://github.com/python-attrs/cattrs/pull/577
https://catt.rs/latest/migrations.html
https://github.com/python-attrs/cattrs/pull/577
https://github.com/python-attrs/cattrs/pull/543
https://github.com/python-attrs/cattrs/issues/547
https://github.com/python-attrs/cattrs/issues/581
https://github.com/python-attrs/cattrs/pull/582
https://github.com/python-attrs/cattrs/issues/578
https://github.com/python-attrs/cattrs/pull/579
https://github.com/python-attrs/cattrs/pull/473
https://github.com/python-attrs/cattrs/pull/486

cattrs Documentation, Release 24.1.2

e Minor change: cattrs.gen.make_dict_structure_fn() will use the value for the pre-
fer_attrib_converters parameter from the given converter by default now. If you're using this function
directly, the old behavior can be restored by passing in the desired values explicitly. (#527 #528)

¢ Introduce BaseConverter.get_structure_hook () and BaseConverter.
get_unstructure_hook () methods. (#432 #472)

* BaseConverter.register_structure_hook (), BaseConverter.
register_unstructure_hook (),BaseConverter.register_unstructure_hook_factory ()
and BaseConverter.register_structure_hook_factory () can now be used as decorators and
have gained new features. See here and here for more details. (#487)

e Introduce and document the cattrs. cols module for better collection customizations. (#504 #540)

e Enhance the cattrs.cols.is_mapping () predicate function to also cover virtual subclasses of abc.
Mapping. This enables map classes from libraries such as immutables or sortedcontainers to structure out-of-
the-box. (#555 #556)

¢ Introduce the msgspec preconf converter. Only JSON is supported for now, with other formats supported
by msgspec to come later. (#481)

 The default union handler now properly takes renamed fields into account. (#472)

¢ The default union handler now also handles dataclasses. (#426 #477)

* Add support for PEP 695 type aliases. (#452)

¢ Add support for PEP 696 TypeVars with defaults. (#512)

* Add support for named tuples with type metadata (typing.NamedTuple). (#425 #491)
¢ Add support for optionally un/unstructuring named tuples using dictionaries. (#425 #549)

e The include_subclasses strategy now fetches the member hooks from the converter (making use of con-
verter defaults) if overrides are not provided, instead of generating new hooks with no overrides. (#429 #472)

* The preconf make_converter factories are now correctly typed. (#481)

e The orjson preconf converter now passes through dates and datetimes to orjson while unstructuring,
greatly improving speed. (#463)

e cattrs.gen generators now attach metadata to the generated functions, making them introspectable. (#472)

e Structure hook factories in catt rs. gen now handle recursive classes better. (#540)

¢ The tagged union strategy now leaves the tags in the payload unless forbid_extra_keys is set. (#533 #534)
* More robust support for Annotated and NotRequired in TypedDicts. (#450)

* typing_extensions.Literal is now automatically structured, just like typing.Literal. (#460
#467)

* typing_extensions.Any is now supported and handled like t yping.Any. (#488 #490)

e Optional types can now be consistently customized using register_structure_hook and regis—
ter_unstructure_hook. (#529 #530)

» The BaseConverter now properly generates detailed validation errors for mappings. (#496)
e PEP 695 generics are now tested. (#452)

* Imports are now sorted using Ruff.

e Tests are run with the pytest-xdist plugin by default.

¢ Rework the introductory parts of the documentation, introducing the Basics section. (#472)

116 Chapter 16. History

https://github.com/python-attrs/cattrs/issues/527
https://github.com/python-attrs/cattrs/pull/528
https://github.com/python-attrs/cattrs/issues/432
https://github.com/python-attrs/cattrs/pull/472
https://catt.rs/en/latest/customizing.html#use-as-decorators
https://catt.rs/en/latest/customizing.html#id1
https://github.com/python-attrs/cattrs/pull/487
https://catt.rs/en/latest/customizing.html#customizing-collections
https://github.com/python-attrs/cattrs/issues/504
https://github.com/python-attrs/cattrs/pull/540
https://github.com/python-attrs/cattrs/issues/555
https://github.com/python-attrs/cattrs/pull/556
https://jcristharif.com/msgspec/
https://github.com/python-attrs/cattrs/pull/481
https://github.com/python-attrs/cattrs/pull/472
https://github.com/python-attrs/cattrs/issues/426
https://github.com/python-attrs/cattrs/pull/477
https://peps.python.org/pep-0695/
https://github.com/python-attrs/cattrs/pull/452
https://peps.python.org/pep-0696/
https://github.com/python-attrs/cattrs/pull/512
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://github.com/python-attrs/cattrs/issues/425
https://github.com/python-attrs/cattrs/pull/491
https://github.com/python-attrs/cattrs/issues/425
https://github.com/python-attrs/cattrs/pull/549
https://github.com/python-attrs/cattrs/issues/429
https://github.com/python-attrs/cattrs/pull/472
https://github.com/python-attrs/cattrs/pull/481
https://github.com/python-attrs/cattrs/pull/463
https://github.com/python-attrs/cattrs/pull/472
https://github.com/python-attrs/cattrs/pull/540
https://catt.rs/en/stable/strategies.html#tagged-unions-strategy
https://github.com/python-attrs/cattrs/issues/533
https://github.com/python-attrs/cattrs/pull/534
https://github.com/python-attrs/cattrs/pull/450
https://github.com/python-attrs/cattrs/issues/460
https://github.com/python-attrs/cattrs/pull/467
https://github.com/python-attrs/cattrs/issues/488
https://github.com/python-attrs/cattrs/pull/490
https://github.com/python-attrs/cattrs/issues/529
https://github.com/python-attrs/cattrs/pull/530
https://github.com/python-attrs/cattrs/pull/496
https://peps.python.org/pep-0695/
https://github.com/python-attrs/cattrs/pull/452
https://github.com/python-attrs/cattrs/pull/472

cattrs Documentation, Release 24.1.2

The documentation has been significantly reworked. (#473)
The docs now use the Inter font.

Make type annotations for include_subclasses and tagged_union strategies more lenient. (#431)

16.5 23.2.3 (2023-11-30)

Fix a regression when unstructuring dictionary values typed as Any. (#453 #462)
Fix a regression when unstructuring unspecialized generic classes. (#465 #466)
Optimize function source code caching. (#445 #464)

Generate unique files only in case of linecache enabled. (#445 #441)

16.6 23.2.2 (2023-11-21)

Fix a regression when unstructuring Any | None. (#453 #454)

16.7 23.2.1 (2023-11-18)

Fix unnecessary t yping_extensions import on Python 3.11. (#446 #447)

16.8 23.2.0 (2023-11-17)

Potentially breaking: skip attrs fields marked as init=False by default. This change is potentially breaking
for unstructuring. See here for instructions on how to restore the old behavior. (#40 #395)

Potentially breaking: cattrs.gen.make_dict_structure_fn() and cattrs.gen.
typeddicts.make dict_structure_fn () will use the values for the detailed_validation and
forbid_extra_keys parameters from the given converter by default now. If you're using these functions
directly, the old behavior can be restored by passing in the desired values directly. (#410 #411)

Potentially breaking: The default union structuring strategy will also use fields annotated as t yping.Literal
to help guide structuring. See here for instructions on how to restore the old behavior. (#391)

Python 3.12 is now supported. Python 3.7 is no longer supported; use older releases there. (#424)

Implement the union passthrough strategy, enabling much richer union handling for preconfigured convert-
ers. Learn more here.

Introduce the use_class_methods strategy. Learn more here. (#405)

The omit parameter of cattrs.override () is now of type bool | None (from bool). None is the
new default and means to apply default cartrs handling to the attribute, which is to omit the attribute if it’s marked
as init=False, and keep it otherwise.

Converters can now be initialized with custom fallback hook factories for un/structuring. (#331 #441)
Add support for date to preconfigured converters. (#420)
Add support for datet ime . dates to the PyYYAML preconfigured converter. (#393)

16.5.

23.2.3 (2023-11-30) 117

https://github.com/python-attrs/cattrs/pull/473
https://github.com/python-attrs/cattrs/pull/431
https://github.com/python-attrs/cattrs/issues/453
https://github.com/python-attrs/cattrs/pull/462
https://github.com/python-attrs/cattrs/issues/465
https://github.com/python-attrs/cattrs/pull/466
https://github.com/python-attrs/cattrs/issues/445
https://github.com/python-attrs/cattrs/pull/464
https://github.com/python-attrs/cattrs/issues/445
https://github.com/python-attrs/cattrs/pull/461
https://github.com/python-attrs/cattrs/issues/453
https://github.com/python-attrs/cattrs/pull/454
https://github.com/python-attrs/cattrs/issues/446
https://github.com/python-attrs/cattrs/pull/447
https://catt.rs/en/latest/customizing.html#include_init_false
https://github.com/python-attrs/cattrs/issues/40
https://github.com/python-attrs/cattrs/pull/395
https://github.com/python-attrs/cattrs/issues/410
https://github.com/python-attrs/cattrs/pull/411
https://catt.rs/en/latest/unions.html#default-union-strategy
https://github.com/python-attrs/cattrs/pull/391
https://github.com/python-attrs/cattrs/pull/424
https://catt.rs/en/stable/strategies.html#union-passthrough
https://catt.rs/en/latest/strategies.html#using-class-specific-structure-and-unstructure-methods
https://github.com/python-attrs/cattrs/pull/405
https://catt.rs/en/latest/converters.html#fallback-hook-factories
https://github.com/python-attrs/cattrs/issues/311
https://github.com/python-attrs/cattrs/pull/441
https://github.com/python-attrs/cattrs/pull/420
https://github.com/python-attrs/cattrs/issues/393

cattrs Documentation, Release 24.1.2

* Fix format_exception () parameter working for recursive calls to t ransform_error. (#389)

e arttrs aliases are now supported, although aliased fields still map to their attribute name instead of their alias by
default when un/structuring. (#322 #391)

¢ Fix TypedDicts with periods in their field names. (#376 #377)
* Optimize and improve unstructuring of Opt ional (unions of one type and None). (#380 #381)
e Fix format_exceptionand transform error type annotations.

* Improve the implementation of cattrs._compat.is_typeddict. The implementation is now simpler, and
relies on fewer private implementation details from typing and typing_extensions. (#384)

¢ Improve handling of TypedDicts with forward references.

* Speed up generated attrs and TypedDict structuring functions by changing their signature slightly. (#388)
* Fix copying of converters with function hooks. (#398 #399)

e Broaden loads ' type definition for the preconf orjson converter. (#400)

e AttributeValidationNoteand IterableValidationNote are now picklable. (#408)
* Fix structuring Final lists. (#412)

* Fix certain cases of structuring Annotated types. (#418)

* Fix the tagged union strategy to work with forbid_extra_keys. (#402 #443)

» Use PDM instead of Poetry.

* cattrs is now linted with Ruff.

¢ Remove some unused lines in the unstructuring code. (#416)

* Fix handling classes inheriting from non-generic protocols. (#374 #436)

* The documentation Makefile now supports the htmlview and htmllive targets. (#442)

* cattrs is now published using PyPI Trusted Publishers, and main branch commits are automatically deployed to
Test PyPIL.

16.9 23.1.2 (2023-06-02)

e Improve typing_extensions version bound. (#372)

16.10 23.1.1 (2023-05-30)

* Add typing_extensions as a direct dependency on 3.10. (#369 #370)

118 Chapter 16. History

https://github.com/python-attrs/cattrs/issues/389
https://www.attrs.org/en/stable/init.html#private-attributes-and-aliases
https://github.com/python-attrs/cattrs/issues/322
https://github.com/python-attrs/cattrs/pull/391
https://github.com/python-attrs/cattrs/issues/376
https://github.com/python-attrs/cattrs/pull/377
https://github.com/python-attrs/cattrs/issues/380
https://github.com/python-attrs/cattrs/pull/381
https://github.com/python-attrs/cattrs/pull/384
https://github.com/python-attrs/cattrs/pull/388
https://github.com/python-attrs/cattrs/issues/398
https://github.com/python-attrs/cattrs/pull/399
https://github.com/python-attrs/cattrs/pull/400
https://github.com/python-attrs/cattrs/pull/408
https://github.com/python-attrs/cattrs/issues/412
https://github.com/python-attrs/cattrs/issues/418
https://catt.rs/en/stable/strategies.html#tagged-unions-strategy
https://github.com/python-attrs/cattrs/issues/402
https://github.com/python-attrs/cattrs/pull/443
https://pdm.fming.dev/latest/
https://beta.ruff.rs/docs/
https://github.com/python-attrs/cattrs/pull/416
https://github.com/python-attrs/cattrs/issues/374
https://github.com/python-attrs/cattrs/pull/436
https://github.com/python-attrs/cattrs/pull/442
https://github.com/python-attrs/cattrs/issues/372
https://github.com/python-attrs/cattrs/issues/369
https://github.com/python-attrs/cattrs/pull/370

cattrs Documentation, Release 24.1.2

16.11 23.1.0 (2023-05-30)

¢ Introduce the tagged_union strategy. (#318 #317)

* Introduce the cattrs.transform_error helper function for formatting validation exceptions. (258 342)
¢ Add support for typing.TypedDict and typing_extensions.TypedDict. (#296 #364)

e Add support for typing.Final. (#340 #349)

¢ Introduce override.struct_hook and override.unstruct_hook. Learn more here. (#326)

* Fix generating structuring functions for types with angle brackets (<>) and pipe symbols (|) in the name. (#319
#327)

* pathlib.Path is now supported by default. (#81)
* Add cbor?2 serialization library to the cattrs.preconf package.
* Add optional dependencies for cattrs.preconf third-party libraries. (#337)

e All preconf converters now allow overriding the default unstruct_collection_overrides in
make_converter. (#350 #353)

* Subclasses structuring and unstructuring is now supported via a custom include_subclasses strategy.
(#312)

* Add support for typing_extensions.Annotated when the python version is less than 3. 9. (#360)

* Add unstructuring and structuring support for the standard library deque. (#355)

16.12 22.2.0 (2022-10-03)

* Potentially breaking: cattrs.Converter has beenrenamed to cattrs.BaseConverter,and cattrs.
GenConverter to cattrs.Converter. The GenConverter name is still available for backwards com-
patibility, but is deprecated. If you were depending on functionality specific to the old Converter, change your
importto from cattrs import BaseConverter.

e NewTypes are now supported by the cattrs.Converter. (#255 #94 #297)

e cattrs.Converter and cattrs.BaseConverter can now copy themselves using the copy method.
(#284)

e Python 3.11 support.

e cattrs now supports un/structuring kw_only fields on attrs classes into/from dictionaries. (#247)

¢ PyPy support (and tests, using a minimal Hypothesis profile) restored. (#253)

* Fix propagating the detailed_validation flag to mapping and counter structuring generators.

* Fix typing.Set applying too broadly when used with the GenConverter.
unstruct_collection_overrides parameter on Python versions below 3.9. Switch to typing.
AbstractSet on those versions to restore the old behavior. (#264)

 Uncap the required Python version, to avoid problems detailed here (#275)

¢ Fix Converter.register_structure_hook_factory and cattrs.gen.
make_dict_unstructure_fn type annotations. (#281)

» Expose all error classes in the cattr.errors namespace. Note that it is deprecated, just use cattrs.
errors. (#252)

16.11. 23.1.0 (2023-05-30) 119

https://catt.rs/en/stable/strategies.html#tagged-unions-strategy
https://github.com/python-attrs/cattrs/pull/318
https://github.com/python-attrs/cattrs/issues/317
https://github.com/python-attrs/cattrs/issues/258
https://github.com/python-attrs/cattrs/pull/342
https://peps.python.org/pep-0589/
https://github.com/python-attrs/cattrs/issues/296
https://github.com/python-attrs/cattrs/pull/364
https://github.com/python-attrs/cattrs/issues/340
https://github.com/python-attrs/cattrs/pull/349
https://catt.rs/en/latest/customizing.html#struct-hook-and-unstruct-hook
https://github.com/python-attrs/cattrs/pull/326
https://github.com/python-attrs/cattrs/issues/319
https://github.com/python-attrs/cattrs/pull/327%3E
https://github.com/python-attrs/cattrs/issues/81
https://github.com/python-attrs/cattrs/pull/337
https://github.com/python-attrs/cattrs/issues/350
https://github.com/python-attrs/cattrs/pull/353
https://github.com/python-attrs/cattrs/pull/312
https://github.com/python-attrs/cattrs/pull/366
https://github.com/python-attrs/cattrs/pull/355
https://docs.python.org/3/library/typing.html#newtype
https://github.com/python-attrs/cattrs/pull/255
https://github.com/python-attrs/cattrs/issues/94
https://github.com/python-attrs/cattrs/issues/297
https://github.com/python-attrs/cattrs/pull/284
https://github.com/python-attrs/cattrs/pull/247
https://github.com/python-attrs/cattrs/issues/253
https://github.com/python-attrs/cattrs/issues/264
https://iscinumpy.dev/post/bound-version-constraints/#pinning-the-python-version-is-special
https://github.com/python-attrs/cattrs/issues/275
https://github.com/python-attrs/cattrs/issues/281
https://github.com/python-attrs/cattrs/issues/252

cattrs Documentation, Release 24.1.2

* Fix generating structuring functions for types with quotes in the name. (#291 #277)

* Fix usage of notes for the final version of PEP 678, supported since exceptiongroup>=1.0.0rc4. (#303)

16.13 22.1.0 (2022-04-03)

cattrs now uses the CalVer versioning convention.

cattrs now has a detailed validation mode, which is enabled by default. Learn more here. The old behavior can be
restored by creating the converter with detailed_validation=False.

attrs and dataclass structuring is now ~25% faster.

Fix an issue structuring bare t yping.List s on Pythons lower than 3.9. (#209)

Fix structuring of non-parametrized containers like 1ist/dict/. .. on Pythons lower than 3.9. (#218)
Fix structuring bare t yping. Tuple on Pythons lower than 3.9. (#218)

FixawrongAttributeError of anmissing__parameters__ attribute. This could happen when inheriting
certain generic classes — for example typing. * classes are affected. (#217)

Fix structuring of enum.Enum instances in typing.Literal types. (#231)
Fix unstructuring all tuples - unannotated, variable-length, homogenous and heterogenous - to 1ist. (#226)

For forbid_extra_keys raise custom ForbiddenExtraKeyError instead of generic Exception.
(#225)

All preconf converters now support 1oads and dumps directly. See an example here.

Fix mappings with byte keys for the orjson, bson and tomlkit converters. (#241)

16.14 1.10.0 (2022-01-04)

Note:

In this release, cattrs introduces the cattrs package as the main entry point into the library, replacing the

cattr package.

The cattr package is never going away, nor is it technically deprecated. New functionality will be added only to the
cattrs package, but there is no need to replace your current imports.

This change mirrors a similar change in atfrs.

Add PEP 563 (string annotations) support for dataclasses. (#195)
Fix handling of dictionaries with string Enum keys for bson, orjson, and tomlkit.

Renamethe cattrs.gen.make_dict_unstructure_fn () omit_1if_ default parameterto_cat-—
trs_omit_if_default, for consistency. The omit_if_default parameters to GenConverter and
override () are unchanged.

Following the changes in attrs 21.3.0, add a cat t rs package mirroring the existing cat t r package. Both package
names may be used as desired, and the cattr package isn’t going away.

120

Chapter 16. History

https://github.com/python-attrs/cattrs/issues/291
https://github.com/python-attrs/cattrs/issues/277
https://peps.python.org/pep-0678/
https://github.com/python-attrs/cattrs/pull/303
https://cattrs.readthedocs.io/en/latest/validation.html
https://github.com/python-attrs/cattrs/issues/209
https://github.com/python-attrs/cattrs/issues/218
https://github.com/python-attrs/cattrs/issues/218
https://github.com/python-attrs/cattrs/issues/217
https://github.com/python-attrs/cattrs/pull/231
https://github.com/python-attrs/cattrs/issues/226
https://github.com/python-attrs/cattrs/pull/225
https://cattrs.readthedocs.io/en/latest/preconf.html
https://github.com/python-attrs/cattrs/issues/241
https://www.attrs.org/en/stable/names.html
https://peps.python.org/pep-0563/
https://github.com/python-attrs/cattrs/issues/195

cattrs Documentation, Release 24.1.2

16.15 1.9.0 (2021-12-06)

e Python 3.10 support, including support for the new union syntax (A | BvsUnion[A, B]).
* The GenConverter can now properly structure generic classes with generic collection fields. (#149)
e omit=True now also affects generated structuring functions. (#166)

* cattr.gen.{make_dict_structure_fn, make_dict_unstructure_fn} now resolve type an-
notations automatically when PEP 563 is used. (#169)

¢ Protocols are now unstructured as their runtime types. (#177)

* Fix an issue generating structuring functions with renaming and _cattrs_forbid_extra_keys=True.
(#190)

16.16 1.8.0 (2021-08-13)

* Fix GenConverter mapping structuring for unannotated dicts on Python 3.8. (#151)

* The source code for generated un/structuring functions is stored in the 1inecache cache, which enables more in-
formative stack traces when un/structuring errors happen using the GenConverter. This behavior can optionally
be disabled to save memory.

* Support using the attr converter callback during structure. By default, this is a method of last resort, but it can
be elevated to the default by setting prefer_attrib_converters=True on Converter or GenCon-
verter. (#138)

¢ Fix structuring recursive classes. (#159)

 Converters now support un/structuring hook factories. This is the most powerful and complex venue for customizing
un/structuring. This had previously been an internal feature.

e The Common Usage Examples documentation page now has a section on advanced hook factory usage.

e cattr.override now supports the omit parameter, which makes cattrs skip the atribute entirely when un-
structuring.

e The cattr.preconf.bson module is now tested against the bson module bundled with the pymongo pack-
age, because that package is much more popular than the standalone PyPI bson package.

16.17 1.7.1 (2021-05-28)

e Literal s are not supported on Python 3.9.0 (supported on 3.9.1 and later), so we skip importing them there.
(#150)

16.15. 1.9.0 (2021-12-06) 121

https://github.com/python-attrs/cattrs/issues/149
https://github.com/python-attrs/cattrs/issues/166
https://github.com/python-attrs/cattrs/issues/169
https://github.com/python-attrs/cattrs/pull/177
https://github.com/python-attrs/cattrs/issues/190
https://github.com/python-attrs/cattrs/issues/151
https://github.com/python-attrs/cattrs/issues/138
https://github.com/python-attrs/cattrs/issues/159
https://cattrs.readthedocs.io/en/latest/usage.html#using-factory-hooks
https://github.com/python-attrs/cattrs/issues/150

cattrs Documentation, Release 24.1.2

16.18 1.7.0 (2021-05-26)

cattr.global_converter (which provides cattr.unstructure, cattr.structure etc.) is now
an instance of cattr.GenConverter.

Literal s are now supported and validated when structuring.
Fix dependency metadata information for attrs. (#147)

Fix GenConverter mapping structuring for unannotated dicts. (#148)

16.19 1.6.0 (2021-04-28)

cattrs now uses Poetry.

GenConverter mapping structuring is now ~25% faster, and unstructuring heterogenous tuples is significantly
faster.

Add cattr.preconf. This package contains modules for making converters for particular serialization libraries.
We currently support the standard library json, and third-party ujson, orjson, msgpack, bson, pyyaml
and tomlkit libraries.

16.20 1.5.0 (2021-04-15)

Fix an issue with GenConverter unstructuring attrs classes and dataclasses with generic fields. (#65)

GenConverter has support for easy overriding of collection unstructuring types (for example, unstructure all
sets to lists) through its unstruct_collection_overrides argument. (#137)

Unstructuring mappings with GenConverter is significantly faster.

GenConverter supports strict handling of unexpected dictionary keys through its forbid_extra_keys
argument. (#142)

16.21 1.4.0 (2021-03-21)

Fix an issue with GenConverter un/structuring hooks when a function hook is registered after the converter
has already been used.

Add support for collections.abc. {Sequence, MutableSequence, Set, MutableSet}.
These should be used on 3.9+ instead of their t yping alternatives, which are deprecated. (#128)

The GenConverter will unstructure iterables (1ist [T], tuple [T, ...],set[T]) using their type argu-
ment instead of the runtime class if its elements, if possible. These unstructuring operations are up to 40% faster.
(#129)

Flesh out Converter and GenConverter initializer type annotations. (#131)

Add support for t yping.Annotated on Python 3.9+. catrs will use the first annotation present. cattrs specific
annotations may be added in the future. (#127)

Add support for dataclasses. (#43)

122

Chapter 16. History

https://github.com/python-attrs/cattrs/issues/147
https://github.com/python-attrs/cattrs/issues/148
https://github.com/python-attrs/cattrs/issues/65
https://github.com/python-attrs/cattrs/pull/137
https://github.com/python-attrs/cattrs/pull/142
https://github.com/python-attrs/cattrs/issues/128
https://github.com/python-attrs/cattrs/issues/129
https://github.com/python-attrs/cattrs/issues/131
https://github.com/python-attrs/cattrs/issues/127
https://github.com/python-attrs/cattrs/issues/43

cattrs Documentation, Release 24.1.2

16.22 1.3.0 (2021-02-25)

cattrs now has a benchmark suite to help make and keep cattrs the fastest it can be. The instructions on using it can
be found under the Benchmarking section in the docs. (#123)

Fix an issue unstructuring tuples of non-primitives. (#125)
cattrsnow calls attr.resolve_types on atrs classes when registering un/structuring hooks.

GenConverter structuring and unstructuring of attrs classes is significantly faster.

16.23 1.2.0 (2021-01-31)

converter.unstructure now supports an optional parameter, unstructure_as, which can be used to
unstructure something as a different type. Useful for unions.

Improve support for union un/structuring hooks. Flesh out docs for advanced union handling. (#115)

Fix GenConverter behavior with inheritance hierarchies of attrs classes. ([#117](https://github.com/python-
attrs/cattrs/pull/117 #116)

Refactor GenConverter.un/structure_attrs_fromdict into GenConverter.
gen_un/structure_attrs_fromdict to allow calling back to Converter.un/
structure_attrs_fromdict without sideeffects. (#118)

16.24 1.1.2 (2020-11-29)

The default disambiguator will not consider non-required fields any more. (#108)
Fix a couple type annotations. (#107 #105)

Fix a GenConverter unstructuring issue and tests.

16.25 1.1.1 (2020-10-30)

Add metadata for supported Python versions. (#103)

16.26 1.1.0 (2020-10-29)

Python 2, 3.5 and 3.6 support removal. If you need it, use a version below 1.1.0.
Python 3.9 support, including support for built-in generic types (List [int] vs typing.List [int]).

cattrs now includes functions to generate specialized structuring and unstructuring hooks. Specialized hooks are
faster and support overrides (omit_if_default and rename). See the cattr.gen module.

cattrs now includes a converter variant, cattr . GenConverter, that automatically generates specialized hooks
for attrs classes. This converter will become the default in the future.

Generating specialized structuring hooks now invokes attr.resolve_types on a class if the class makes use of the
new PEP 563 annotations.

cattrs now depends on attrs >= 20.1.0, because of attr.resolve_types.

16.22. 1.3.0 (2021-02-25) 123

https://cattrs.readthedocs.io/en/latest/benchmarking.html
https://github.com/python-attrs/cattrs/pull/123
https://github.com/python-attrs/cattrs/issues/125
https://github.com/python-attrs/cattrs/pull/115
https://github.com/python-attrs/cattrs/issues/116%3E
https://github.com/python-attrs/cattrs/issues/118
https://github.com/python-attrs/cattrs/pull/108
https://github.com/python-attrs/cattrs/pull/107
https://github.com/python-attrs/cattrs/issues/105
https://github.com/python-attrs/cattrs/pull/103
https://www.attrs.org/en/stable/api.html#attr.resolve_types

cattrs Documentation, Release 24.1.2

* Specialized hooks now support generic classes. The default converter will generate and use a specialized hook upon
encountering a generic class.

16.27 1.0.0 (2019-12-27)

* attrs classes with private attributes can now be structured by default.
e Structuring from dictionaries is now more lenient: extra keys are ignored.
* cattrs has improved type annotations for use with Mypy.

* Unstructuring sets and frozensets now works properly.

16.28 0.9.1 (2019-10-26)

* Python 3.8 support.

16.29 0.9.0 (2018-07-22)

* Python 3.7 support.

16.30 0.8.1 (2018-06-19)

¢ The disambiguation function generator now supports unions of artrs classes and NoneType.

16.31 0.8.0 (2018-04-14)

¢ Distribution fix.

16.32 0.7.0 (2018-04-12)

¢ Removed the undocumented Converter.unstruct_strat property setter.
* Removed the ability to set the Converter.structure_attrs instance field.

¢ Some micro-optimizations were applied; a st ructure (unstructure (ob3j)) roundtrip is now up to 2 times
faster.

124 Chapter 16. History

cattrs Documentation, Release 24.1.2

16.33 0.6.0 (2017-12-25)

Packaging fixes. (#17)

16.34 0.5.0 (2017-12-11)

structure/unstructure now supports using functions as well as classes for deciding the appropriate function.

added Converter.register_structure_hook_func, to register a function instead of a class for de-
termining handler func.

added Converter.register_unstructure_hook_func, to register a function instead of a class for
determining handler func.

vendored typing is no longer needed, nor provided.
Attributes with default values can now be structured if they are missing in the input. (#15)
Optional attributes can no longer be structured if they are missing in the input.

cattr.typed removed since the functionality is now present in aftrs itself. Replace instances of cattr.
typed (type) with attr.ib (type=type).

16.35 0.4.0 (2017-07-17)

Converter.loads is now Converter.structure, and Converter.dumps is now Converter.
unstructure.

Python 2.7 is supported.

Moved cattr.typingto cattr.vendor.typing to support different vendored versions of typing.py for
Python 2 and Python 3.

Type metadata can be added to attrs classes using cattr.typed.

16.36 0.3.0 (2017-03-18)

Python 3.4 is no longer supported.

Introduced cattr.typing for use with Python versions 3.5.2 and 3.6.0.

Minor changes to work with newer versions of typing.

Bare Optionals are not supported any more (use Optional [Any]).

Attempting to load unrecognized classes will result in a ValueError, and a helpful message to register a loads hook.
Loading attrs classes is now documented.

The global converter is now documented.

cattr.loads_attrs_fromtuple and cattr.loads_attrs_fromdict are now exposed.

16.33. 0.6.0 (2017-12-25) 125

https://github.com/python-attrs/cattrs/pull/17
https://github.com/python-attrs/cattrs/pull/15

cattrs Documentation, Release 24.1.2

16.37 0.2.0 (2016-10-02)

¢ Tests and documentation.

16.38 0.1.0 (2016-08-13)

* First release on PyPI.

126

Chapter 16. History

C

cattrs,

cattrs
cattrs
cattrs
cattrs

cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs

cattrs.
.v, 107

cattrs

65

.cols, 99
.disambiguators, 102
.dispatch, 102
.errors, 105

cattrs.
.gen, 78
.gen.typeddicts, 82
.preconft,
.precont.
.preconf.
.preconf
.preconft.
.precont.
.precont.
.preconf.
.preconf.

fns, 106

83
cbor2, 83
json, 85

.msgpack, 86

msgspec, 88
orjson, 90
pyyaml, 92
tomlkit, 94
ujson, 95

strategies, 97

PYTHON MODULE INDEX

127

cattrs Documentation, Release 24.1.2

128 Python Module Index

A

AS_DICT (cattrs. UnstructureStrategy attribute), 78

AS_TUPLE (cattrs. UnstructureStrategy attribute), 78

AttributeValidationNote (class in cattrs), 75

AttributeValidationNote (class in cattrs.errors),
105

B

BaseConverter (class in cattrs), 67
BaseValidationError, 75, 105

C

cattrs
module, 65
cattrs.cols
module, 99
cattrs.disambiguators
module, 102
cattrs.dispatch
module, 102
cattrs.errors
module, 105
cattrs.fns
module, 106
cattrs.gen
module, 78
cattrs.gen.typeddicts
module, 82
cattrs.preconf
module, 83
cattrs.preconf.
module, 83
cattrs.preconf.
module, 85
cattrs.preconf.
module, 86
cattrs.preconf.
module, 88
cattrs.preconf.
module, 90
cattrs.precont.
module, 92

cbor2
json
msgpack
msgspec
orjson

pyyaml

INDEX

cattrs.preconf.tomlkit

module, 94
cattrs.preconf.ujson

module, 95
cattrs.strategies

module, 97
cattrs.v

module, 107
Cbor2Converter (class in cattrs.preconf.cbor2), 83
c1 (cattrs.BaseValidationError attribute), 76
c1 (cattrs.errors.Base ValidationError attribute), 105
ClassValidationError, 76, 106
clear_cache () (cattrs.dispatch. MultiStrategyDispatch

method), 104

clear_direct () (cat-
trs.dispatch. MultiStrategyDispatch method),
104
configure_converter () (in module cat-
trs.preconf.cbor2), 84
configure_converter () (in module cat-
trs.preconf.json), 86
configure_converter () (in module cat-
trs.preconf.msgpack), 88
configure_converter () (in module cat-
trs.preconf.msgspec), 90
configure_converter () (in module cat-
trs.preconf.orjson), 91
configure_converter () (in module cat-
trs.preconf.pyyaml), 93
configure_converter () (in module cat-
trs.preconf.tomlkit), 95
configure_converter () (in module cat-
trs.preconf.ujson), 96
configure_tagged_union() (in module cat-
trs.strategies), 97
configure_union_passthrough () (in module

cattrs.strategies), 97
Converter (class in cattrs), 71
copy () (cattrs.BaseConverter method), 71
copy () (cattrs.Converter method), 75
copy_to () (cattrs.dispatch.FunctionDispatch method),
103

129

cattrs Documentation, Release 24.1.2

copy_to () (cattrs.dispatch. MultiStrategyDispatch
method), 104

create_default_dis_func ()
trs.disambiguators), 102

(in module cat-

D

derive () (cattrs.BaseValidationError method), 76

derive () (cattrs.errors.BaseValidationError method),
105

detailed_validation (cattrs.BaseConverter at-
tribute), 68

dispatch (cattrs.dispatch. MultiStrategyDispatch at-

tribute), 103
dispatch () (cattrs.dispatch. FunctionDispatch method),
103

dispatch_without_caching () (cat-
trs.dispatch. MultiStrategyDispatch method),
103

dumps () (cattrs.preconf.cbor2.Cbor2Converter method),
84

dumps () (cattrs.preconf.json.JsonConverter method), 85

dumps () (cattrs.preconf.msgpack. MsgpackConverter
method), 87

dumps () (cattrs.preconf.msgspec. MsgspecJsonConverter
method), 89

dumps () (cattrs.preconf.orjson.OrjsonConverter method),
91

dumps () (cattrs.preconf.pyyaml. PyyamlConverter
method), 93

dumps () (cattrs.preconf.tomlkit. TomlkitConverter
method), 94

dumps () (cattrs.preconf.ujson. UisonConverter method),
96

E

encoder (cattrs.preconf.-msgspec. MsgspecJsonConverter
attribute), 89

F

forbid_extra_keys (cattrs.Converter attribute), 72

forbid_extra_keys (cat-
trs.preconf.cbor2.Cbor2Converter attribute),
84

forbid_extra_keys (cat-

trs.preconf.json.JsonConverter attribute), 86

forbid_extra_keys (cat-
trs.preconf.msgpack. MsgpackConverter attribute),
88

forbid_extra_keys (cat-
trs.preconf.msgspec. MsgspecJsonConverter
attribute), 90

forbid_extra_keys (cat-
trs.preconf.orjson.OrjsonConverter attribute),

91

forbid_extra_keys (cat-
trs.preconf.pyyaml. PyyamlConverter attribute),
93

forbid_extra_keys (cat-
trs.preconf-tomlkit. TomlkitConverter attribute),
95

forbid_extra_keys (cat-
trs.preconf.ujson. UjsonConverter attribute),

96
ForbiddenExtraKeysError, 76, 106
format_exception () (in module cattrs.v), 107
FunctionDispatch (class in cattrs.dispatch), 102

G

gen_structure_annotated()
method), 73

gen_structure_attrs_fromdict ()
trs.Converter method), 74

gen_structure_counter ()

(cattrs.Converter
(cat-

(cattrs.Converter

method), 74
gen_structure_mapping () (cattrs.Converter
method), 75
gen_structure_typeddict () (cattrs.Converter
method), T4
gen_unstructure_annotated () (cattrs.Converter
method), 73
gen_unstructure_attrs_fromdict () (cat-
trs.Converter method), 73
gen_unstructure_hetero_tuple () (cat-

trs.Converter method), 74
gen_unstructure_iterable ()
method), 74
gen_unstructure_mapping ()
method), 74
gen_unstructure_optional ()
method), 74
gen_unstructure_typeddict () (cattrs.Converter
method), 73
GenConverter (in module cattrs), 76

(cattrs.Converter
(cattrs.Converter

(cattrs.Converter

get_dumps_hook () (cat-
trs.preconf.msgspec. MsgspecJsonConverter
method), 89

get_loads_hook () (cat-

trs.preconf.msgspec.MsgspecJsonConverter

method), 89
get_num_fns () (cattrs.dispatch. FunctionDispatch
method), 103

get_num_=fns () (cattrs.dispatch. MultiStrategyDispatch
method), 104

get_structure_hook ()
method), 70

get_structure_hook () (in module cattrs), 65

get_structure_newtype () (cattrs.Converter
method), 73

(cattrs.BaseConverter

130

Index

cattrs Documentation, Release 24.1.2

get_unstructure_hook () (cattrs. BaseConverter
method), 69

get_unstructure_hook () (in module cattrs), 65

global_converter (in module cattrs), 67

group_exceptions () (cattrs.Class ValidationError
method), 76

group_exceptions () (cat-
trs.errors.Class ValidationError method), 106

group_exceptions () (cat-
trs.errors.Iterable ValidationError method),
105

group_exceptions () (cattrs.IterableValidationError
method), 76

identity () (in module cattrs.fns), 106

include_subclasses () (in module cattrs.strategies),
98

is_any_set () (in module cattrs.cols), 99

is_frozenset () (in module cattrs.cols), 99

is_mapping () (in module cattrs.cols), 99

is_namedtuple () (in module cattrs.cols), 99

is_sequence () (in module cattrs.cols), 100

is_set () (in module cattrs.cols), 99

is_supported_union () (in module cat-
trs.disambiguators), 102
iterable_unstructure_factory () (in module

cattrs.cols), 100
IterablevValidationError, 76, 105
IterableValidationNote (class in cattrs), 76
IterableValidationNote (class in cattrs.errors),

105

J

JsonConverter (class in cattrs.preconf.json), 85

L

list_structure_factory ()
trs.cols), 100

loads () (cattrs.preconf.cbor2.Cbor2Converter method),
84

loads () (cattrs.preconf.json.JsonConverter method), 86

(in module cat-

loads () (cattrs.preconf.msgpack. MsgpackConverter
method), 87

loads () (cattrs.preconf.msgspec.MsgspecJsonConverter
method), 89

loads () (cattrs.preconf.orjson.OrjsonConverter method),
91

loads () (cattrs.preconf.pyyaml. PyyamlConverter
method), 93

loads () (cattrs.preconf.tomlkit. TomlkitConverter
method), 94

loads () (cattrs.preconf.ujson.UjsonConverter method),
96

M

make_converter () (in module cattrs.preconf.cbor2),
84
make_converter () (in module cattrs.preconf.json), 86

make_converter () (in module cat-
trs.preconf.msgpack), 88
make_converter () (in module cat-

trs.preconf.msgspec), 90
make_converter () (in module cattrs.preconf.orjson),

92

make_converter () (in module cattrs.preconf.pyyaml),
93

make_converter () (in module cattrs.preconf.tomlkit),
95

make_converter () (in module cattrs.preconf.ujson),
97

make_dict_structure_fn() (in module cat-
trs.gen), 78

make_dict_structure_fn () (in module cat-
trs.gen.typeddicts), 82

make_dict_structure_fn_from_attrs() (in

module cattrs.gen), 81
make_dict_unstructure_fn ()
trs.gen), 78
make_dict_unstructure_f£fn ()
trs.gen.typeddicts), 82
make_dict_unstructure_fn_from_attrs ()
(in module cattrs.gen), 80
make_hetero_tuple_unstructure_fn ()
module cattrs.gen), 80
make_iterable_unstructure_fn () (in module
cattrs.gen), 719
make_mapping_structure_fn () (in module cat-
trs.gen), 80
make_mapping_unstructure_fn ()
cattrs.gen), 80
mapping_structure_factory () (in module cat-
trs.cols), 101
module
cattrs, 65
cattrs.cols, 99
cattrs.disambiguators, 102
.dispatch, 102
.errors, 105
.fns, 106
.gen, 78
.gen.typeddicts, 82
.preconf, 83
.preconf.cbor2, 83
.preconf. json, 85
.preconf .msgpack, 86
.preconf.msgspec, 88
.preconf.orjson, 90
.preconf.pyyaml, 92

(in module cat-

(in module cat-

(in

(in module

cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs
cattrs

Index

131

cattrs Documentation, Release 24.1.2

cattrs.preconf.tomlkit, 94
cattrs.preconf.ujson, 95
cattrs.strategies, 97
cattrs.v, 107
MsgpackConverter (class in cattrs.preconf.msgpack),
86
MsgspecdsonConverter
trs.preconf.msgspec), 88
MultiStrategyDispatch (class in cattrs.dispatch),
103

(class in cat-

N

name (cattrs. Attribute ValidationNote attribute), 75

name (cattrs.errors. Attribute ValidationNote attribute), 106

namedtuple_dict_structure_factory () (in
module cattrs.cols), 101

namedtuple_dict_unstructure_factory ()
(in module cattrs.cols), 101

namedtuple_structure_factory () (in module
cattrs.cols), 100

namedtuple_unstructure_factory () (in mod-
ule cattrs.cols), 100

O

omit_1if_default (cattrs.Converter attribute), 72

omit_1if default (cat-
trs.preconf.cbor2.Cbor2Converter attribute),
84

omit_1if_default (cattrs.preconf.json.JsonConverter
attribute), 86

omit_1if default (cat-

trs.preconf.msgpack. MsgpackConverter attribute),
88

omit_if_default (cat-
trs.preconf.msgspec. MsgspecJsonConverter
attribute), 90

omit_if default (cat-
trs.preconf.orjson.OrjsonConverter attribute),
91

omit_if_default (cat-
trs.preconf.pyyaml. PyyamlConverter attribute),
93

omit_if default (cat-
trs.preconf.tomlkit. TomlkitConverter attribute),
95

omit_if_default (cat-
trs.preconf.ujson. UjsonConverter attribute),

96
OrjsonConverter (class in cattrs.preconf.orjson), 90
override () (in module cattrs), 77

P

Predicate (in module cattrs.fns), 106
PyyamlConverter (class in cattrs.preconf.pyyaml), 92

R

raise_error () (in module cattrs.fns), 106
register () (cattrs.dispatch. FunctionDispatch method),
103

register_cls_list () (cat-
trs.dispatch. MultiStrategyDispatch method),
104

register_func_list () (cat-
trs.dispatch. MultiStrategyDispatch method),
104

register_structure_hook () (cat-

trs.BaseConverter method), 69

register_structure_hook () (in module cattrs),
66

register_structure_hook_factory() (cat-
trs. BaseConverter method), 70
register_structure_hook_factory () (cat-
trs.Converter method), 73
register_structure_hook_func() (cat-
trs. BaseConverter method), 69
register_structure_hook_func () (in module
cattrs), 66
register_unstructure_hook () (cat-

trs. BaseConverter method), 68
register_unstructure_hook () (in module cat-
trs), 67
register_unstructure_hook_factory () (cat-
trs.BaseConverter method), 68
register_unstructure_hook_factory () (cat-
trs.Converter method), 72
register_unstructure_hook_func ()
trs. BaseConverter method), 68
register_unstructure_hook_func () (in mod-
ule cattrs), 66

(cat-

S

structure () (cattrs.BaseConverter method), 70
structure () (in module cattrs), 65
structure_attrs_fromdict ()
trs.BaseConverter method), 71
structure_attrs_fromdict () (in module cattrs),
67
structure_attrs_fromtuple ()
trs. BaseConverter method), 71
structure_attrs_fromtuple () (in module cat-
trs), 67
StructureHandlerNotFoundError, 77, 105

T

TomlkitConverter (class in cattrs.preconf.tomlkit), 94
transform_error () (in module cattrs), 77
transform_error () (in module cattrs.v), 107

type (cattrs. Attribute ValidationNote attribute), 75

type (cattrs.errors. Attribute ValidationNote attribute), 106

(cat-

(cat-

132

Index

cattrs Documentation, Release 24.1.2

type (cattrs.errors.Iterable ValidationNote attribute), 105
type (cattrs.lterable ValidationNote attribute), 77
type_overrides (cattrs.Converter attribute), 72
type_overrides (cattrs.preconf.cbor2.Cbor2Converter

attribute), 84

type_overrides (cattrs.preconf.json.JsonConverter at-
tribute), 86

type_overrides (cat-
trs.preconf.msgpack. MsgpackConverter attribute),
88

type_overrides (cat-
trs.preconf.msgspec. MsgspecJsonConverter
attribute), 90

type_overrides (cat-
trs.preconf.orjson.OrjsonConverter attribute),
91

type_overrides (cat-
trs.preconf.pyyaml. PyyamlConverter attribute),
93

type_overrides (cat-
trs.preconf.tomlkit. TomlkitConverter attribute),
95

type_overrides (cattrs.preconf.ujson. UisonConverter
attribute), 96

U

UjsonConverter (class in cattrs.preconf.ujson), 95
unstruct_strat (cattrs.BaseConverter property), 68
unstructure () (cattrs.BaseConverter method), 68
unstructure () (in module cattrs), 65

unstructure_attrs_asdict () (cat-
trs. BaseConverter method), 70
unstructure_attrs_astuple () (cat-

trs.BaseConverter method), 71
UnstructureStrategqgy (class in cattrs), 78
use_class_methods () (in module cattrs.strategies),

98

\Y

validate_date () (in module cattrs.preconf.pyyaml),
92
validate_datetime () (in module cattrs.preconf), 83

W

wrap () (in module cattrs.preconf’), 83

Index

133

	Why cattrs?
	Examples
	Features
	Recursive Unstructuring
	Recursive Structuring
	Batteries Included

	Design Decisions
	Additional Documentation and Talks

	The Basics
	Converters and Hooks
	Global Converter

	Built-in Hooks
	Primitive Values
	int, float, str, bytes
	Enums
	pathlib.Path

	Collections and Related Generics
	Optionals
	Lists
	Dictionaries
	Virtual Subclasses of abc.Mapping and abc.MutableMapping
	Homogeneous and Heterogeneous Tuples
	Deques
	Sets and Frozensets
	Typed Dicts

	attrs Classes and Dataclasses
	Generics
	Using Attribute Types and Converters

	Unions
	Automatic Disambiguation
	Unions of Simple Types

	Special Typing Forms
	typing.Any
	typing.Literal
	typing.NamedTuple
	typing.Final
	typing.Annotated
	Type Aliases
	typing.NewType
	typing.Protocol

	Customizing (Un-)structuring
	Custom (Un-)structuring Hooks
	Use as Decorators
	Predicate Hooks
	Hook Factories
	Use as Decorators

	Customizing Collections
	Customizing Named Tuples

	Using cattrs.gen Generators
	omit_if_default
	forbid_extra_keys
	rename
	omit
	struct_hook and unstruct_hook
	use_alias
	include_init_false

	Strategies
	Tagged Unions Strategy
	Real-life Case Study

	Include Subclasses Strategy
	Customization

	Using Class-Specific Structure and Unstructure Methods
	Union Passthrough

	Recipes
	Switching Initializers
	Selecting an Alternative Initializer
	Dynamically Switching Between Initializers

	Validation
	Detailed Validation
	Transforming Exceptions into Error Messages

	Non-detailed Validation

	Preconfigured Converters
	Standard Library json
	orjson
	msgspec
	ujson
	msgpack
	cbor2
	bson
	pyyaml
	tomlkit

	Handling Unions
	Default Union Strategy
	Unstructuring Unions with Extra Metadata

	Advanced Examples
	Using Factory Hooks
	Using Fallback Key Names

	Migrations
	24.2.0
	The default structure hook fallback factory

	Converters In-Depth
	Customizing Collection Unstructuring
	Fallback Hook Factories
	cattrs.Converter
	cattrs.BaseConverter

	cattrs
	cattrs package
	Subpackages
	cattrs.gen package
	Submodules
	cattrs.gen.typeddicts module

	cattrs.preconf package
	Submodules
	cattrs.preconf.bson module
	cattrs.preconf.cbor2 module
	cattrs.preconf.json module
	cattrs.preconf.msgpack module
	cattrs.preconf.msgspec module
	cattrs.preconf.orjson module
	cattrs.preconf.pyyaml module
	cattrs.preconf.tomlkit module
	cattrs.preconf.ujson module

	cattrs.strategies package

	Submodules
	cattrs.cols module
	cattrs.disambiguators module
	cattrs.dispatch module
	cattrs.errors module
	cattrs.fns module
	cattrs.v module

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips

	Benchmarking
	A Sample Workflow

	History
	24.2.0 (UNRELEASED)
	24.1.2 (2024-09-22)
	24.1.1 (2024-09-11)
	24.1.0 (2024-08-28)
	23.2.3 (2023-11-30)
	23.2.2 (2023-11-21)
	23.2.1 (2023-11-18)
	23.2.0 (2023-11-17)
	23.1.2 (2023-06-02)
	23.1.1 (2023-05-30)
	23.1.0 (2023-05-30)
	22.2.0 (2022-10-03)
	22.1.0 (2022-04-03)
	1.10.0 (2022-01-04)
	1.9.0 (2021-12-06)
	1.8.0 (2021-08-13)
	1.7.1 (2021-05-28)
	1.7.0 (2021-05-26)
	1.6.0 (2021-04-28)
	1.5.0 (2021-04-15)
	1.4.0 (2021-03-21)
	1.3.0 (2021-02-25)
	1.2.0 (2021-01-31)
	1.1.2 (2020-11-29)
	1.1.1 (2020-10-30)
	1.1.0 (2020-10-29)
	1.0.0 (2019-12-27)
	0.9.1 (2019-10-26)
	0.9.0 (2018-07-22)
	0.8.1 (2018-06-19)
	0.8.0 (2018-04-14)
	0.7.0 (2018-04-12)
	0.6.0 (2017-12-25)
	0.5.0 (2017-12-11)
	0.4.0 (2017-07-17)
	0.3.0 (2017-03-18)
	0.2.0 (2016-10-02)
	0.1.0 (2016-08-13)

	Python Module Index
	Index

