Given a Lie homomorphism f, a basis is given for the kernel in the specified degree n (and homological degree d).
i1 : L=lieAlgebra({a,b,c,r3,r4,r42}, {{{1,-1},{[b,c],[a,c]}},[a,b],{{1,-1},{[b,r4],[a,r4]}}}, genWeights => {{1,0},{1,0},{2,0},{3,1},{4,1},{4,2}}, genDiffs=>{[],[],[],[a,c],[a,a,c],{{1,-1},{[r4],[a,r3]}}}, genSigns=>{0,0,0,1,1,0}) o1 = L o1 : LieAlgebra |
i2 : M=minmodelLie 5 o2 = M o2 : LieAlgebra |
i3 : f=M.modelmap o3 = f o3 : MapLie |
i4 : kernelBasisLie(5,2,f) o4 = {[fr , fr , fr ], [fr , fr , fr ], [fr , fr ], [fr , fr ]} 0 3 3 1 3 3 3 4 3 5 o4 : List |
i5 : useLie M o5 = M o5 : LieAlgebra |
i6 : indexFormLie kernelBasisLie(5,2,f) o6 = {mb , mb , mb , mb } {5, 32} {5, 33} {5, 39} {5, 41} o6 : List |