ReesAlgebra : Index
- analyticSpread -- Compute the analytic spread of a module or ideal
- analyticSpread(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- analyticSpread(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- analyticSpread(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- analyticSpread(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- analyticSpread(..., Strategy => ...) -- Choose a strategy for the saturation step
- analyticSpread(Ideal) -- Compute the analytic spread of a module or ideal
- analyticSpread(Ideal,RingElement) -- Compute the analytic spread of a module or ideal
- analyticSpread(Module) -- Compute the analytic spread of a module or ideal
- analyticSpread(Module,RingElement) -- Compute the analytic spread of a module or ideal
- distinguished -- Compute the distinguished subvarieties of a pullback, intersection or cone
- distinguished(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- distinguished(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- distinguished(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- distinguished(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- distinguished(..., Strategy => ...) -- Choose a strategy for the saturation step
- distinguished(..., Variable => ...) -- Choose name for variables in the created ring
- distinguished(Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
- distinguished(Ideal,Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
- distinguished(RingMap,Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
- expectedReesIdeal -- symmetric algebra ideal plus jacobian dual
- expectedReesIdeal(Ideal) -- symmetric algebra ideal plus jacobian dual
- expectedReesIdeal(Module) -- symmetric algebra ideal plus jacobian dual
- intersectInP -- Compute distinguished varieties for an intersection in A^n or P^n
- intersectInP(..., BasisElementLimit => ...) -- Option for intersectInP
- intersectInP(..., DegreeLimit => ...) -- Option for intersectInP
- intersectInP(..., MinimalGenerators => ...) -- Option for intersectInP
- intersectInP(..., PairLimit => ...) -- Option for intersectInP
- intersectInP(..., Strategy => ...) -- Option for intersectInP
- intersectInP(..., Variable => ...) -- Option for intersectInP
- intersectInP(Ideal,Ideal) -- Compute distinguished varieties for an intersection in A^n or P^n
- isLinearType -- Determine whether module has linear type
- isLinearType(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- isLinearType(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- isLinearType(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- isLinearType(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- isLinearType(..., Strategy => ...) -- Choose a strategy for the saturation step
- isLinearType(Ideal) -- Determine whether module has linear type
- isLinearType(Ideal,RingElement) -- Determine whether module has linear type
- isLinearType(Module) -- Determine whether module has linear type
- isLinearType(Module,RingElement) -- Determine whether module has linear type
- isReduction -- Determine whether an ideal is a reduction
- isReduction(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- isReduction(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- isReduction(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- isReduction(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- isReduction(..., Strategy => ...) -- Choose a strategy for the saturation step
- isReduction(..., Variable => ...) -- Choose name for variables in the created ring
- isReduction(Ideal,Ideal) -- Determine whether an ideal is a reduction
- isReduction(Ideal,Ideal,RingElement) -- Determine whether an ideal is a reduction
- isReduction(Module,Module) -- Determine whether an ideal is a reduction
- isReduction(Module,Module,RingElement) -- Determine whether an ideal is a reduction
- Jacobian -- Choose whether to use the Jacobian dual in the computation
- jacobianDual -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
- jacobianDual(..., Variable => ...) -- Choose name for variables in the created ring
- jacobianDual(Matrix) -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
- jacobianDual(Matrix,Matrix,Matrix) -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
- minimalReduction -- Find a minimal reduction of an ideal
- minimalReduction(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- minimalReduction(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- minimalReduction(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- minimalReduction(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- minimalReduction(..., Strategy => ...) -- Choose a strategy for the saturation step
- minimalReduction(..., Tries => ...) -- Set the number of random tries to compute a minimal reduction
- minimalReduction(Ideal) -- Find a minimal reduction of an ideal
- multiplicity -- Compute the Hilbert-Samuel multiplicity of an ideal
- multiplicity(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- multiplicity(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- multiplicity(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- multiplicity(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- multiplicity(..., Strategy => ...) -- Choose a strategy for the saturation step
- multiplicity(..., Variable => ...) -- Option for intersectInP
- multiplicity(Ideal) -- Compute the Hilbert-Samuel multiplicity of an ideal
- multiplicity(Ideal,RingElement) -- Compute the Hilbert-Samuel multiplicity of an ideal
- normalCone -- The normal cone of a subscheme
- normalCone(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- normalCone(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- normalCone(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- normalCone(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- normalCone(..., Strategy => ...) -- Choose a strategy for the saturation step
- normalCone(..., Variable => ...) -- Choose name for variables in the created ring
- normalCone(Ideal) -- The normal cone of a subscheme
- normalCone(Ideal,RingElement) -- The normal cone of a subscheme
- PlaneCurveSingularities -- Using the Rees Algebra to resolve plane curve singularities
- reductionNumber -- Reduction number of one ideal with respect to another
- reductionNumber(Ideal,Ideal) -- Reduction number of one ideal with respect to another
- ReesAlgebra -- Compute Rees algebras and their invariants
- reesAlgebra -- Compute the defining ideal of the Rees Algebra
- reesAlgebra(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- reesAlgebra(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- reesAlgebra(..., Jacobian => ...) -- Choose whether to use the Jacobian dual in the computation
- reesAlgebra(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- reesAlgebra(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- reesAlgebra(..., Strategy => ...) -- Choose a strategy for the saturation step
- reesAlgebra(..., Variable => ...) -- Choose name for variables in the created ring
- reesAlgebra(Ideal) -- Compute the defining ideal of the Rees Algebra
- reesAlgebra(Ideal,RingElement) -- Compute the defining ideal of the Rees Algebra
- reesAlgebra(Module) -- Compute the defining ideal of the Rees Algebra
- reesAlgebra(Module,RingElement) -- Compute the defining ideal of the Rees Algebra
- reesIdeal -- Compute the defining ideal of the Rees Algebra
- reesIdeal(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- reesIdeal(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- reesIdeal(..., Jacobian => ...) -- Compute the defining ideal of the Rees Algebra
- reesIdeal(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- reesIdeal(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- reesIdeal(..., Strategy => ...) -- Choose a strategy for the saturation step
- reesIdeal(..., Variable => ...) -- Choose name for variables in the created ring
- reesIdeal(Ideal) -- Compute the defining ideal of the Rees Algebra
- reesIdeal(Ideal,RingElement) -- Compute the defining ideal of the Rees Algebra
- reesIdeal(Module) -- Compute the defining ideal of the Rees Algebra
- reesIdeal(Module,RingElement) -- Compute the defining ideal of the Rees Algebra
- specialFiber -- Special fiber of a blowup
- specialFiber(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- specialFiber(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- specialFiber(..., Jacobian => ...) -- Special fiber of a blowup
- specialFiber(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- specialFiber(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- specialFiber(..., Strategy => ...) -- Choose a strategy for the saturation step
- specialFiber(..., Variable => ...) -- Choose name for variables in the created ring
- specialFiber(Ideal) -- Special fiber of a blowup
- specialFiber(Ideal,RingElement) -- Special fiber of a blowup
- specialFiber(Module) -- Special fiber of a blowup
- specialFiber(Module,RingElement) -- Special fiber of a blowup
- specialFiberIdeal -- Special fiber of a blowup
- specialFiberIdeal(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
- specialFiberIdeal(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
- specialFiberIdeal(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
- specialFiberIdeal(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
- specialFiberIdeal(..., Strategy => ...) -- Choose a strategy for the saturation step
- specialFiberIdeal(..., Variable => ...) -- Choose name for variables in the created ring
- specialFiberIdeal(Ideal) -- Special fiber of a blowup
- specialFiberIdeal(Ideal,RingElement) -- Special fiber of a blowup
- specialFiberIdeal(Module) -- Special fiber of a blowup
- specialFiberIdeal(Module,RingElement) -- Special fiber of a blowup
- symmetricAlgebraIdeal -- Ideal of the symmetric algebra of an ideal or module
- symmetricAlgebraIdeal(..., VariableBaseName => ...) -- Ideal of the symmetric algebra of an ideal or module
- symmetricAlgebraIdeal(Ideal) -- Ideal of the symmetric algebra of an ideal or module
- symmetricAlgebraIdeal(Module) -- Ideal of the symmetric algebra of an ideal or module
- symmetricKernel -- Compute the Rees ring of the image of a matrix
- symmetricKernel(..., Variable => ...) -- Choose name for variables in the created ring
- symmetricKernel(Matrix) -- Compute the Rees ring of the image of a matrix
- Tries -- Set the number of random tries to compute a minimal reduction
- versalEmbedding -- Compute a versal embedding
- versalEmbedding(Ideal) -- Compute a versal embedding
- versalEmbedding(Module) -- Compute a versal embedding
- whichGm -- Largest Gm satisfied by an ideal
- whichGm(Ideal) -- Largest Gm satisfied by an ideal