next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
InvariantRing :: secondaryInvariants

secondaryInvariants -- computes secondary invariants for the invariant ring of a finite group

Synopsis

Description

The example below computes the secondary invariants for the dihedral group with 6 elements, given a set of primary invariantsP.

i1 : K=toField(QQ[a]/(a^2+a+1));
i2 : R=K[x,y];
i3 : A=matrix{{a,0},{0,a^2}}; 

             2       2
o3 : Matrix K  <--- K
i4 : B=sub(matrix{{0,1},{1,0}},K); 

             2       2
o4 : Matrix K  <--- K
i5 : D6={A^0,A,A^2,B,A*B,A^2*B}

o5 = {| 1 0 |, | a 0    |, | -a-1 0 |, | 0 1 |, | 0    a |, | 0 -a-1 |}
      | 0 1 |  | 0 -a-1 |  | 0    a |  | 1 0 |  | -a-1 0 |  | a 0    |

o5 : List
i6 : P={x^3+y^3,-(x^3-y^3)^2};
i7 : secondaryInvariants(P,D6)

               2 2
o7 = {1, x*y, x y }

o7 : List

This function is provided by the package InvariantRing.

Caveat

Currently, a user needs to ensure that the all primary invariants are defined with coefficients in a ring that Macaulay2 recognises as a characteristic zero field (see toField for a way to do this).

Note also that the function secondaryInvariants only works when R is defined over a field of characteristic zero.

Ways to use secondaryInvariants :