An expression is a general Lie expression if it is either a monomialLie or of the form {{coefs},{liemons}}, where coefs belong to L.field and liemons are monomialLie, not [], of the same weight and sign. As coefficients one may always use an integer or a quotient of integers with non-zero denominator in the field. See How to write Lie elements.
i1 : L = lieAlgebra({a,b,c},{},genSigns=>{1,1,0},field=>frac(ZZ/5[x])) o1 = L o1 : LieAlgebra |
i2 : generalExpressionLie{{1,2},{[a,b],[a,c]}} the input is not sign-homogeneous o2 = false |
i3 : generalExpressionLie{{1,2},{[a,b],[a,b,c]}} the input is not weight-homogeneous o3 = false |
i4 : generalExpressionLie{{1/3,2*x-1},{[a,a,b],[a,c,c]}} o4 = true |